DEC 19, 2018 2:57 PM PST

Better Security Through Biological Encryption

WRITTEN BY: Carmen Leitch

It seems like there’s always another story about a hacked website, data breach or computer virus. Securing information is a difficult prospect, at a time when there is an endless amount of sensitive data online. Engineers have now developed a method for encryption that is unclonable and not susceptible to reverse-engineering, something that will become a concern as computers get more complex and powerful. The work has been reported in Advanced Theory & Simulations.

Image credit: Modified from Pexels

"Currently, encryption is done with mathematical algorithms that are called one-way functions. These are easy to create in one direction but very difficult to do in the opposite direction," explained Saptarshi Das, assistant professor of engineering science and mechanics, Penn State.

For example, if a given number is huge, reverse-engineering two numbers that produce it through multiplication would be time-consuming and require a lot of computational effort. In the near future, however, that effort will become easy by today's standards.

"However, now that computers are becoming more powerful and quantum computing is on the horizon, using encryption that relies on its effectiveness because it is monumentally time-consuming to decrypt won't fly anymore," added Das.

Totally random encryption keys cannot be reverse-engineered and are unclonable since there’s no formula or pattern to them. Unless some physical process is used, random number generators are not truly random; they rely on an algorithm to create pseudo-random numbers.

"We need to go back to nature and identify real random things," said Das. "Because there is no mathematical basis for many biological processes, no computer can unravel them."

For this work, the researchers assessed a type of human immune cell - a T cell. Graduate students Akhil Dodda and Akshay Wali, and postdoctoral fellow Yang Wu captured images of a two-dimensional array of T cells. The images were then pixelated, and the researchers assigned T cell pixels a “one” and empty spaces “zeros.”

"When we started there were a few papers out using nanomaterials," said Dodda. "However, they weather (nanomaterials) out of the material and are stationary."

Live cells are different; they move, so they can be photographed over and over, generating new encryption keys every time.

"We need a lot of keys because the population of the world is 7 billion," noted Das. "Each person will generate a megabyte of data every second by 2020."

Encryption keys will be required for everything from data on a personal computer to vast repositories kept by businesses or medical institutions, for example. It would also be easy to replace encryption keys with new ones if there was a problem.

"It is very difficult to reverse-engineer these systems," said Dodda. "Not being able to reverse-engineer these keys is an area of strength."

The team is now utilizing 2,000 T cells to make one encryption key. The noted that even if someone knew the type of cell that was used to make the key as well as its physical properties, and had the generation mechanism including the key generation rate and sampling instance, it would still not be possible for them to break into the system. 

"We need something secure, and biological species-encrypted security systems will keep our data safe and secure everywhere and anytime," said Wali.

Quantum computing is on the horizon. Learn more about it from the video.


Sources: AAAS/Eurekalert! via Penn State, Advanced Theory & Simulations

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 08, 2019
Cell & Molecular Biology
DEC 08, 2019
Time-Restricted Eating Improves Symptoms of Metabolic Syndrome
Occasional fasting has been linked to a variety of health benefits....
DEC 31, 2019
Cell & Molecular Biology
DEC 31, 2019
Growing a Better Lab-Based Meat
Meat consumption has risen around the world in the past few decades, and demand is still increasing....
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 23, 2020
Cell & Molecular Biology
JAN 23, 2020
Scientists Engineer Venom-Producing Organoids
Snake venom is also a source of therapeutics, and a potential source of new medicines....
FEB 01, 2020
Cell & Molecular Biology
FEB 01, 2020
Immunity in the Gut Ramps Up Around Mealtimes
Scientists have found that our immune system benefits when we eat regular meals....
FEB 10, 2020
Immunology
FEB 10, 2020
How Cancer Evades the Immune System Time and Time Again
Scientists discovered a new mechanism by which cancer cells evade the immune system to further their own agenda: invade, multiply, and spread. Identifying...
Loading Comments...