DEC 19, 2018 02:57 PM PST

Better Security Through Biological Encryption

WRITTEN BY: Carmen Leitch

It seems like there’s always another story about a hacked website, data breach or computer virus. Securing information is a difficult prospect, at a time when there is an endless amount of sensitive data online. Engineers have now developed a method for encryption that is unclonable and not susceptible to reverse-engineering, something that will become a concern as computers get more complex and powerful. The work has been reported in Advanced Theory & Simulations.

Image credit: Modified from Pexels

"Currently, encryption is done with mathematical algorithms that are called one-way functions. These are easy to create in one direction but very difficult to do in the opposite direction," explained Saptarshi Das, assistant professor of engineering science and mechanics, Penn State.

For example, if a given number is huge, reverse-engineering two numbers that produce it through multiplication would be time-consuming and require a lot of computational effort. In the near future, however, that effort will become easy by today's standards.

"However, now that computers are becoming more powerful and quantum computing is on the horizon, using encryption that relies on its effectiveness because it is monumentally time-consuming to decrypt won't fly anymore," added Das.

Totally random encryption keys cannot be reverse-engineered and are unclonable since there’s no formula or pattern to them. Unless some physical process is used, random number generators are not truly random; they rely on an algorithm to create pseudo-random numbers.

"We need to go back to nature and identify real random things," said Das. "Because there is no mathematical basis for many biological processes, no computer can unravel them."

For this work, the researchers assessed a type of human immune cell - a T cell. Graduate students Akhil Dodda and Akshay Wali, and postdoctoral fellow Yang Wu captured images of a two-dimensional array of T cells. The images were then pixelated, and the researchers assigned T cell pixels a “one” and empty spaces “zeros.”

"When we started there were a few papers out using nanomaterials," said Dodda. "However, they weather (nanomaterials) out of the material and are stationary."

Live cells are different; they move, so they can be photographed over and over, generating new encryption keys every time.

"We need a lot of keys because the population of the world is 7 billion," noted Das. "Each person will generate a megabyte of data every second by 2020."

Encryption keys will be required for everything from data on a personal computer to vast repositories kept by businesses or medical institutions, for example. It would also be easy to replace encryption keys with new ones if there was a problem.

"It is very difficult to reverse-engineer these systems," said Dodda. "Not being able to reverse-engineer these keys is an area of strength."

The team is now utilizing 2,000 T cells to make one encryption key. The noted that even if someone knew the type of cell that was used to make the key as well as its physical properties, and had the generation mechanism including the key generation rate and sampling instance, it would still not be possible for them to break into the system. 

"We need something secure, and biological species-encrypted security systems will keep our data safe and secure everywhere and anytime," said Wali.

Quantum computing is on the horizon. Learn more about it from the video.


Sources: AAAS/Eurekalert! via Penn State, Advanced Theory & Simulations

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
A New Approach to Tick Control
Ticks can transmit a long list of diseases to humans and other animals, and more are emerging all the time....
OCT 17, 2019
Neuroscience
OCT 17, 2019
New MRI scan can reveal molecular changes in the brain
MRI scans give us pictures of the brain that depict the physical structure of brain tissue. Now, researchers discovered a way to determine the biological m...
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Using CRISPR to Track and Image Genome Editing in Real Time
A team of scientists use fluorescently labeled proteins and CRISPR technology to image DNA transcription and chromosomal rearrangements....
OCT 17, 2019
Neuroscience
OCT 17, 2019
Extreme athletic training tires out the brain, impairs decision-making
Excessive athletic training does some wear and tear on the body; but according to new research, it can also make the brain tired, leading to poor decision-making. In a paper recently publish...
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
"Silent" RNA Increases Progression of COPD
New study reveals that non-coding RNA effects the progression COPD....
OCT 17, 2019
Neuroscience
OCT 17, 2019
Schizophrenia May Be Treated By Targeting Opioid Receptors in the Brain
Schizophrenia is a severe and debilitating mental illness that affects about 1 in 100 people. This mental disorder is usually characterized by patients' "positive" symptoms, including psychot...
Loading Comments...