DEC 19, 2018 2:59 PM PST

Deep Learning Improves Cloud Detection Methods

WRITTEN BY: Nouran Amin

To understand the workings of earth systems, atmospheric scientists often search data images for the clouds as part of their research. However, the manual work involved in the labeling of data images is time-consuming and so more than often scientist rely heavily on automatic processing techniques based on cloud detection algorithms. Unfortunately, the output generated by these algorithms are not always as exact as the researchers desire it to be.

Clouds come in all shapes and sizes. Now, a model based on a subset of machine learning known as ‘Deep Learning’ may help detect the finer details in cloud data.

Credit: Adriel Kloppenburg on Unsplash via Pacific Northwest National Laboratory

"The current algorithm identifies the clouds using broad brushstrokes," says co-principal investigator on the project and Earth scientist, Donna Flynn. "We need to more accurately determine the cloud's true top and base and to distinguish multiple cloud layers."

To combat such a hurdle, scientists at the Department of Energy's Pacific Northwest National Laboratory have opted to try a subset of machine learning known as deep learning in hopes team to find better ways of identifying clouds in LIDAR data (Light Detection and Ranging) instead of the present physics-based algorithms.

"An advantage of the deep learning model is transfer learning," says Erol Cromwell, a computational scientist and co-principal investigator at Pacific Northwest National Laboratory. "We can train the model further with data from Oliktok to make its performance more robust."

The researchers found out that the new deep learning model gave them more accurate answers in just a fraction of the time. During training and testing of the model, they first started labeling LIDAR data images. The model was found to learn through self-feedback by improving through each cycle and adjusting its calculations accordingly by comparing its own work against results generated by manual labor.

Learn more on how deep learning tackles cloud detection:

"Reducing sources of uncertainty in global model predictions is especially important to the atmospheric science community," states Flynn. "With its improved precision, deep learning increases our confidence…Plus, it gives us more time to be outside looking at real clouds!"

Source: Pacific Northwest National Laboratory

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
OCT 02, 2020
Clinical & Molecular DX
Detecting Dystonia in the Blink of an AI
OCT 02, 2020
Detecting Dystonia in the Blink of an AI
A team of scientists have created a diagnostic tool, powered by artificial intelligence (AI), that can pick up on the su ...
OCT 07, 2020
Technology
Millimeter-Precision Drug Delivery
OCT 07, 2020
Millimeter-Precision Drug Delivery
It is almost impossible to deliver targeted drug therapy via the bloodstream without reaching the entire brain and body ...
OCT 08, 2020
Technology
Computational Tools Reveal Differences Between C3 and C4 Plants
OCT 08, 2020
Computational Tools Reveal Differences Between C3 and C4 Plants
The COVID-19 pandemic has made life hard for a lot of researchers. For one, they could not be physically in the lab and ...
OCT 09, 2020
Technology
Deep Learning Advances Drug Design
OCT 09, 2020
Deep Learning Advances Drug Design
Computational data is advancing all areas of medicine and pharmaceutical drug development is certainly no exception. &nb ...
NOV 17, 2020
Cardiology
Validating Blood Pressure Functionality in a New Smartwatch
NOV 17, 2020
Validating Blood Pressure Functionality in a New Smartwatch
One of the most exciting advancements in our time is wearable technology. While most see it as a cool piece of tech on y ...
FEB 05, 2021
Technology
Using Technology To Advancing Biomarker Testing
FEB 05, 2021
Using Technology To Advancing Biomarker Testing
Diagnosing disease depends largely on biomarkers. These markers are complex molecules ranging from our genes to hormones ...
Loading Comments...