MAR 05, 2019 7:20 AM PST

How Resurrection Plants Survive Without Water

WRITTEN BY: Carmen Leitch

While life is intrinsically connected to water, some so-called anhydrobiotic organisms can survive for long stretches without it.  A tiny group of plants is able to live for months or even years without water; they are known as resurrection plants because they can completely recover from a desiccated state when water becomes available. Now researchers have learned more about how they do it, which can help researchers develop plants and crops that are more tolerant of stress and drought, and which are facing an uncertain future. The findings have been published in Scientific Reports.

Haberlea rhodopensis, a resurrection plant species, was used as a model system to study the underlying mechanisms of extreme desiccation tolerance. / Credit: Kobe University

Haberlea rhodopensis is one of about 350 plant species on the planet that can survive being dehydrated for a long time and then become fully functional and normal after getting water again. In this work research teams at Kobe University's Graduate School of Agricultural Science and a research group at Agrobioinstitute in Sofia, Bulgaria used near-infrared light to observe Haberlea rhodopensis and a non-resurrecting relative called Deinostigma eberhardtii as they desiccated and rehydrated.

 The scientists used a non-destructive 'aquaphotomics' approach to analyze the process. As it dried, water in the leaves of Haberlea rhodopensis went through a careful, orderly restructuring, accumulating water dimers with four hydrogen bonds while drastically reducing free water molecules. This is thought to be the start of the process that allows the plant to live through a dry period.

Resurrection plants have a range of mechanisms and adaptive skills that enable them to deal with dehydration; those efforts focus mainly on reducing oxidative stress and protecting cellular integrity. This work investigated how water was involved in the process and showed that the structure of water in the related resurrection and non-resurrection plants were very different.

In Haberlea rhodopensis water content is rapidly reduced to thirteen percent, while Deinostigma eberhardtii tried in vain to keep water levels at about 35 percent. The water molecule structure during dehydration was different in the two plants. Relationships between certain molecular types of water, like dimers and trimers, were maintained in Haberlea rhodopensis, with random fluctuations of water types in Deinostigma eberhardtii.

Check out a resurrection plant springing back to life in the video.

Deinostigma eberhardtii never showed any transformations of its water structures. To the last point of desiccation, it still had lots of free water molecules, while Haberlea rhodopensis had drastically cut down the number of free water molecules. This same orchestrated approach to water structure was also seen during rehydration in Haberlea rhodopensis, with most water species undergoing incremental changes in order.

It seems that water structure, not content, is critical to the survival of these organisms. The work suggests that some living systems may have an organizational structure, and not dynamics, at their center.


Sources: AAAS/Eurekalert! Via Kobe University, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 04, 2020
Genetics & Genomics
The Intriguing Genome of Mitochondria
OCT 04, 2020
The Intriguing Genome of Mitochondria
Our cells carry special structures called organelles, with each different organelle performing various specialized, crit ...
OCT 22, 2020
Microbiology
SARS-CoV-2 Has Multiple Routes Into Cells
OCT 22, 2020
SARS-CoV-2 Has Multiple Routes Into Cells
Since the pandemic virus SARS-CoV-2 emerged on the scene late last year, it's left a trail of devastation around the glo ...
NOV 02, 2020
Cell & Molecular Biology
Catching Cells in the Act of Self-Repair
NOV 02, 2020
Catching Cells in the Act of Self-Repair
Cells have to be flexible and move with each other and our bodies. When cells get overstretched, they have to be able to ...
NOV 03, 2020
Cell & Molecular Biology
The Connections Between Toxins, Genes, and Disease
NOV 03, 2020
The Connections Between Toxins, Genes, and Disease
We are exposed to a vast array of chemicals every day. Many are harmless or even important, like the air we breathe, wat ...
NOV 12, 2020
Genetics & Genomics
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
NOV 12, 2020
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
To repair disease-causing errors in the genome, gene editing reagents like those used in CRISPR-Cas9 first have to reach ...
NOV 30, 2020
Genetics & Genomics
Green Genetic Technology Can Help Feed the World
NOV 30, 2020
Green Genetic Technology Can Help Feed the World
In the latter half of the last century, agriculture underwent a technological revolution that enabled farmers to create ...
Loading Comments...