JUL 15, 2019 6:30 AM PDT

Revealing Protein Interactions by Studying the Genome

WRITTEN BY: Carmen Leitch

Proteins carry out the critical processes necessary for life. Having an understanding of biology requires revealing the relationships and interactions between proteins. While there are a variety of methods for finding those interactions, it can be a laborious, expensive, and time-consuming prospect. Now scientists have utilized advances in genetic sequencing technology to make it easier to identify protein interactions.

Which protein molecules work together to carry out important biological functions? An analysis of thousands of bacterial genomes has given researchers new insights into which proteins interact inside cells. Similar studies are underway on human genomes. / Credit: Institute for Protein Design

Reporting in Science, researchers at Harvard University and the University of Washington School of Medicine have found evolutionary signatures that bacterial gene pairs have in common. Using this approach, the scientists discovered hundreds of protein interactions that were unknown before this. Now the technique is being used to find protein interactions in humans.

"Protein-protein interactions are fundamental to biological function. It's remarkable that they can now be predicted en masse using the large amounts of genomic sequence data that have been generated in recent years," said the senior author of the study David Baker, professor of biochemistry at the University of Washington (UW) School of Medicine.

In this work, computational biologists used the co-evolution phenomenon, in which changes in one gene are linked to changes in another; it suggests that the two genes have an important connection. If two genes produce proteins that interact and one becomes mutated, causing its shape to change, the other gene might then evolve so that the protein it generates will continue to interact with its mutated partner, for example.

"Co-evolution has been useful for understanding how specific proteins interact, but we can now use it as a tool for discovery," said lead author Qian Cong, a postdoctoral fellow at the UW School of Medicine.

The investigators compared over 4,000 E. coli genes to 40,000 other bacterial genomes. Using statistics, they analyzed co-evolution among E. coli genes. The researchers identified 1,618 pairs of genes that probably co-evolved. The team compared their findings to known interactions; their method had better accuracy than other screening methods that are being developed.

It is unclear whether any of these predicted interactions were verified with traditional benchtop methods like yeast two-hybrid, but some may help explain some known biological observations. More work is also being planned.

"It is rare in biology for a software tool to make predictions that are promising enough to test, but that is exactly what's happening here," noted Cong. There are literally hundreds of follow-up experiments that could be performed in labs around the world."

The scientists also assessed protein interactions in the pathogenic bacterium Mycobacterium tuberculosis with this tool. They found 911 interactions, 95 percent of which were previously unknown. Some involve virulence and may help researchers create new therapeutics for tuberculosis.

"We are going to apply this tool to more pathogens, and the human genome," added Cong. "Our success will depend on how much work other scientists put into annotating which parts of the genome are genes and which parts are something else."


Sources: AAAS/Eurekalert! Via University of Washington, Science

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 18, 2020
Cardiology
A Key Juncture Between Diabetes and Heart Repair
AUG 18, 2020
A Key Juncture Between Diabetes and Heart Repair
Patients with diabetes are often at increased cardiovascular risk. Recent research points to a possible new target for t ...
AUG 24, 2020
Drug Discovery & Development
New Drug Reduces Swelling in Asthma and COPD
AUG 24, 2020
New Drug Reduces Swelling in Asthma and COPD
Researchers from the University of Glasgow, Scotland, and the University of Technology Sydney in Australia have identifi ...
AUG 27, 2020
Cardiology
Are Dry Mouth and Hypertension Connected?
AUG 27, 2020
Are Dry Mouth and Hypertension Connected?
Dry mouth is one of those things you sort of ignore until you can refill your water bottle. Maybe you should take a seco ...
AUG 29, 2020
Cardiology
Protecting the Heart Against Damage from Mechanical Stress
AUG 29, 2020
Protecting the Heart Against Damage from Mechanical Stress
Heart failure is a traumatic event that can have long-lasting consequences. Often, after an adverse cardiac event, the h ...
AUG 28, 2020
Genetics & Genomics
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
AUG 28, 2020
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
Even though genes that code for protein have been an intense focus of biomedical research for decades, the human genome ...
SEP 25, 2020
Cell & Molecular Biology
Researchers Take Organoids a Step Further
SEP 25, 2020
Researchers Take Organoids a Step Further
The human body is made of many different kinds of cells, which can often be cultured in a lab and studied. However, thos ...
Loading Comments...