OCT 14, 2019 12:19 PM PDT

Understanding How Life Could Have Arisen From RNA

WRITTEN BY: Carmen Leitch

Sometime around four billion years ago, scientists think that life arose, and they have been trying to learn more about how that happened. Before animals could evolve, cells had to be created, and before that, the molecules that cells are made of had to exist. Organic chemist Thomas Carell and colleagues have theorized that special minerals may have given rise to the basis of genetic material - nucleotides, which make up RNA, before there was even DNA.

Building on that theory, the researchers have identified a chemical pathway that could be the one which generated RNA’s nucleotides, adenine (A), uracil (U), cytosine (C) and guanine (G) from the basic materials that would have been available in Earth’s ancient primordial soup. So many nucleotides could have been made from the reactions the scientists described that they could build up into thick crusts, said Carell. The work has been reported in Science.

Their research suggests that RNA-based genes that could reproduce on their own are the basis of life - the RNA world hypothesis, which is outlined in the video above. If true, this theory would indicate that life didn’t come about because some very special set of circumstances existed; it would be easy for this to happen on other planets, Carell added.

Carell’s team has already shown that there are chemical cascades that are capable of generating certain nucleotides or nucleobases. But the reactions don’t work under the same conditions; they require different pH levels and temperatures. By contrast, the reactions they’ve now identified can work in the same environment.

In their study, the scientists used two ponds containing stuff that could flow back and forth, and cycled through conditions that mimic seasonal changes like wet and dry or hot and cold. As simple molecules floated together in a pool of hot water, then cooled and dried out, a residue was generated. It contained two kinds of organic compounds. Water was then added to the residue, and some organic molecules dissolved and washed into another pond. That removed a water-soluble compound. The other molecule that remained was then free to go through further reactions. Finally, the organic compounds were mixed again, and nucleotides were formed.

Image credit: Pixabay

“This paper has demonstrated marvelously the chemistry that needs to take place so you can make all the RNA nucleosides,” chemist Ramanarayanan Krishnamurthy of Scripps Research in La Jolla, California told Nature. He cautioned, however, that these results may not demonstrate the actual evolution of life on our planet.

Carell plans to continue his work to learn more about the formation of ribose, which is required to connect nucleotides and generate RNA.

 

Sources: AAAS/Eurekalert! via Ludwig-Maximilians-Universität München, Nature, Science

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 01, 2020
Cell & Molecular Biology
FEB 01, 2020
Immunity in the Gut Ramps Up Around Mealtimes
Scientists have found that our immune system benefits when we eat regular meals....
FEB 05, 2020
Genetics & Genomics
FEB 05, 2020
'Chromosome Shattering' is Common Across Cancer Types
A type of genetic mutation called chromothripsis was discovered a few years ago in chronic lymphocytic leukemia....
FEB 26, 2020
Cell & Molecular Biology
FEB 26, 2020
Does the rainforest hold the cure to cancer?
Scientists discover molecule within a tree root from the tropical rainforest that has anti-cancer properties....
MAR 17, 2020
Cell & Molecular Biology
MAR 17, 2020
In Search of the Original Enzyme
It has been suggested that life arose from molecules that gradually came together in the right ways to form simple cells....
MAR 08, 2020
Drug Discovery & Development
MAR 08, 2020
DNA Origami Helps With Cancer Therapeutics
A study published in the Proceedings of the National Academy of Sciences, describes how researchers designed molecules known as "peptoid-coated DNA or...
APR 02, 2020
Cancer
APR 02, 2020
Diagnosing Cancer: SMOC2 and Thyroid Cancer
  Thyroid cancer is the most common of the endocrine cancers, with papillary thyroid carcinomas (PTCs) being the most common form. Thyroid cancer has...
Loading Comments...