JAN 11, 2020 9:55 AM PST

To Save Others, Bacteria Can Self-Destruct When Infected by a Virus

WRITTEN BY: Carmen Leitch

Scientists were studying viruses that infect and kill bacteria, called bacteriophages or phages as a therapeutic for bacterial infections over a hundred years ago. Antibiotics came along, however, and we no longer needed these viruses. Now that antibiotics are becoming less effective, researchers want to know more about phages, and how they can be used to treat bacterial infections that are antibiotic-resistant. Scientists have now identified an immune mechanism that shields bacteria from phages, and works by initiating a self-destruct mode in bacteria, thereby preventing the infection from spreading to other cells. The findings, which have implications for the use of phages as a treatment, have been reported in Molecular Cell.

Image credit: Pixabay

"Abortive infection is an old concept, but it's still controversial -- a bacterial cell essentially takes one for the team, killing itself rather than being used to produce more phages," said the senior study author Kevin Corbett, Ph.D., associate professor of cellular and molecular medicine at the University of California San Diego School of Medicine.

"It's been debated whether or not it's logical, from an evolutionary standpoint, for single-celled organisms to do this. But if we think of bacteria as a cooperative community, a biofilm, rather than as individual cells, it makes sense."

Corbett's lab used to study a cell division process called meiosis. A protein family called HORMA became a focus of their research, and in 2015, bioinformatics data from the National Institutes of Health suggested that bacteria make these proteins.

E. coli cells containing the CBASS system (pink oval shapes) destroy their (blue) genomes after bacteriophage lambda infection. Uninfected cells with intact genomes are at the top of the image. / Credit: UC San Diego Health Sciences

"I'm a basic scientist, and I'm particularly interested in evolutionary connections between proteins and pathways that you would never expect to be related," said Corbett. "So I wondered, what could these proteins be doing in bacteria?"

This newly identified bacterial immune system, called CBASS, can be found in about ten percent of bacteria out of the roughly 75,000 with genomes that have been sequenced, said Corbett. His team engineered a lab strain of phage-sensitive Escherichia coli to carry CBASS. "We were thrilled to find that CBASS provided nearly absolute immunity to phages," Corbett noted.

The researchers also learned more about the molecular characteristics of the proteins that function in CBASS; the HORMA proteins sense infection and trigger another protein to send a message. This message activates an enzyme that destroys the bacterial genome, which kills the cell and stops the phage from reproducing.

This work may help scientists create phage therapies that are impervious to CBASS, and more effective at stopping bacterial infections. The video above tells the story of a man that was saved by phages from a drug-resistant infection.

"On the other hand, if we can find a way to activate this system with a drug, we might be able to get CBASS-containing bacteria to kill themselves," he said. "Doing something like that really requires that we have a clear understanding of the detailed mechanisms at play.

"We've studied just one of more than 6,000 distinct CBASS systems, each of which encodes a different set of infection sensors, signaling proteins and effector proteins like the nuclease in our system. Understanding how these different sets of parts work together, and how bacteria have mixed and matched them as they've evolved, will give us a more complete picture of how it all works, and how we might best intervene."

Sources: AAAS/Eurekalert! via University of California - San Diego, Molecular Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 19, 2020
Cell & Molecular Biology
Learning More About How Cells Control a Death Pathway
JUN 19, 2020
Learning More About How Cells Control a Death Pathway
Scientists have published complementary studies in Nature Communications that have greatly advanced our understanding of ...
JUN 20, 2020
Cell & Molecular Biology
Antibodies Isolated From COVID-19 Patients Show Therapeutic Potential
JUN 20, 2020
Antibodies Isolated From COVID-19 Patients Show Therapeutic Potential
Communities worldwide are emerging from lockdowns due to the SARS-CoV-2 pandemic virus, and cases are rising.
JUN 01, 2020
Neuroscience
New Path to Gene Therapy for ALS
JUN 01, 2020
New Path to Gene Therapy for ALS
Video: Todd Cohen, PhD (UNC) discusses GA protein accumulation.  At the time of this video promising research was a ...
JUN 26, 2020
Drug Discovery & Development
Bacterial Virus May Treat and Prevent COVID-19 Infections
JUN 26, 2020
Bacterial Virus May Treat and Prevent COVID-19 Infections
Researchers say that a type of virus known to infect bacteria could be used to treat and prevent COVID-19 bacterial infe ...
JUL 08, 2020
Cell & Molecular Biology
How Caffeine Can Aid Lizard Conservation Efforts
JUL 08, 2020
How Caffeine Can Aid Lizard Conservation Efforts
Lizards are thought to be under threat due to habitat loss, predation, climate change, and other factors worldwide.
AUG 02, 2020
Cell & Molecular Biology
'Wasabi' Receptor Can Detect Many Irritants
AUG 02, 2020
'Wasabi' Receptor Can Detect Many Irritants
We're often exposed to irritants as mild as garlic or horseradish and as serious as smoke, which trigger a protective re ...
Loading Comments...