JAN 11, 2020 1:16 PM PST

Single Cells Carry 'Forests' of Chromatin

WRITTEN BY: Carmen Leitch

All of the instructions that are required to create and maintain an organism are carried in its DNA, and every cell carries a copy of that genetic code. Most human cells are thought to carry DNA that would stretch out to a length of two meters if it was unpackaged completely. In order to fit all of that genetic material into every cell, it has to be carefully coiled and wrapped so that it's compact, but also in a way that also enables the cell's machinery to access the right places at the right times.

Image credit: Pxfuel

DNA is wrapped and organized around proteins called histones, and together that complex is called chromatin. While we know a bit about the structure of chromatin, scientists are beginning to learn more about how it may be related to health and disease.

Researchers at Northwestern University have used imaging tools they created along with mathematical models to show how chromatin is folded. They showed that it can form several domains that are shaped like trees lining a chromatin path. This work, which was reported in Science Advances, suggested that chromatin is not as loose as thought, and that it has a hierarchy and structure in cells.

Northwestern University researchers found that chromatin folds into tree-like domains on a chromatin backbone. / Credit: Northwestern University

"By integrating theoretical and experimental work, we have produced a new chromatin folding picture that helps us see how the 3D genome is organized at the single-cell level," said study co-leader Igal Szleifer, the Christina Enroth-Cugell Professor of Biomedical Engineering at Northwestern's McCormick School of Engineering.

"If genes are the hardware, chromatin is the software," said study co-leader Vadim Backman, the Walter Dill Scott Professor of Biomedical Engineering and director of the Center for Physical Genomics and Engineering. "If the structure of chromatin changes, it can alter the processing of the information stored in the genome, but it does not alter the genes themselves. Understanding chromatin folding holds the key to understanding how cells differentiate and how cancer happens."

The researchers utilized advanced techniques in genetics, computer science, and imaging in this study; they used electron imaging, Partial Wave Spectroscopic (PWS) microscopy, and optical imaging created by Backman and colleagues.

"Our paradigm-shifting picture of chromatin folding is an important missing piece in the holistic view of genomic structure," said study first Kai Huang, a postdoctoral fellow in the Backman lab. "The results should inspire new strategies to fight cancer."

Sources: AAAS/Eurekalert! via Northwestern University, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 01, 2020
Genetics & Genomics
A Better View of the Mechanisms Underlying Night Vision
NOV 01, 2020
A Better View of the Mechanisms Underlying Night Vision
When light levels are low, the rod cells of our eyes go to work to help us see.
NOV 22, 2020
Cell & Molecular Biology
What is ChIP-Seq and Is It Quantitative After All?
NOV 22, 2020
What is ChIP-Seq and Is It Quantitative After All?
ChIP-Seq is a tool for analyzing the interactions between DNA and the proteins that bind to it, which influences gene ac ...
NOV 27, 2020
Cell & Molecular Biology
UVC Rays May be a Bigger Cancer Risk Than Known
NOV 27, 2020
UVC Rays May be a Bigger Cancer Risk Than Known
The sun emits different kinds of light and rays including visible and ultraviolet (UV) and infrared. Some of those forms ...
DEC 06, 2020
Genetics & Genomics
New Epigenetic Signature Discovered in Zebrafish
DEC 06, 2020
New Epigenetic Signature Discovered in Zebrafish
Zebrafish are a great model organism for biomedical research. They generate large numbers of embryos that develop rapidl ...
DEC 14, 2020
Genetics & Genomics
tRNA Plays a Role in the Immune Response to Stroke
DEC 14, 2020
tRNA Plays a Role in the Immune Response to Stroke
At one time, researchers knew that various forms of RNA served a few different critical roles in the creation of protein ...
DEC 24, 2020
Genetics & Genomics
After Chromosomes Shatter, Cancer Cells Can Become Drug-Resistant
DEC 24, 2020
After Chromosomes Shatter, Cancer Cells Can Become Drug-Resistant
Many types of cells have to be replenished throughout our lives, and cells divide to replace those that are damaged or w ...
Loading Comments...