JAN 11, 2020 1:16 PM PST

Single Cells Carry 'Forests' of Chromatin

WRITTEN BY: Carmen Leitch

All of the instructions that are required to create and maintain an organism are carried in its DNA, and every cell carries a copy of that genetic code. Most human cells are thought to carry DNA that would stretch out to a length of two meters if it was unpackaged completely. In order to fit all of that genetic material into every cell, it has to be carefully coiled and wrapped so that it's compact, but also in a way that also enables the cell's machinery to access the right places at the right times.

Image credit: Pxfuel

DNA is wrapped and organized around proteins called histones, and together that complex is called chromatin. While we know a bit about the structure of chromatin, scientists are beginning to learn more about how it may be related to health and disease.

Researchers at Northwestern University have used imaging tools they created along with mathematical models to show how chromatin is folded. They showed that it can form several domains that are shaped like trees lining a chromatin path. This work, which was reported in Science Advances, suggested that chromatin is not as loose as thought, and that it has a hierarchy and structure in cells.

Northwestern University researchers found that chromatin folds into tree-like domains on a chromatin backbone. / Credit: Northwestern University

"By integrating theoretical and experimental work, we have produced a new chromatin folding picture that helps us see how the 3D genome is organized at the single-cell level," said study co-leader Igal Szleifer, the Christina Enroth-Cugell Professor of Biomedical Engineering at Northwestern's McCormick School of Engineering.

"If genes are the hardware, chromatin is the software," said study co-leader Vadim Backman, the Walter Dill Scott Professor of Biomedical Engineering and director of the Center for Physical Genomics and Engineering. "If the structure of chromatin changes, it can alter the processing of the information stored in the genome, but it does not alter the genes themselves. Understanding chromatin folding holds the key to understanding how cells differentiate and how cancer happens."

The researchers utilized advanced techniques in genetics, computer science, and imaging in this study; they used electron imaging, Partial Wave Spectroscopic (PWS) microscopy, and optical imaging created by Backman and colleagues.

"Our paradigm-shifting picture of chromatin folding is an important missing piece in the holistic view of genomic structure," said study first Kai Huang, a postdoctoral fellow in the Backman lab. "The results should inspire new strategies to fight cancer."

Sources: AAAS/Eurekalert! via Northwestern University, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 09, 2020
Genetics & Genomics
JAN 09, 2020
Exploring the Genetic Link to Parental Neglect
Early life experiences impact how the brain is formed, and creates either a stable, solid foundation for later life, or a fragile architecture....
JAN 12, 2020
Genetics & Genomics
JAN 12, 2020
Water Lily Genome Provides Insight Into Flowering Plant Evolution
The genomic sequence of an ancient flowering plant, the water lily Nymphaea colorata, has been revealed....
JAN 19, 2020
Neuroscience
JAN 19, 2020
New Proteins Found in the Optical Processing of Lazy Eyes
Ophthalmology – Amblyopia: By Christine Law M.D.   Researchers in the Bear Lab at the Massachusetts Institute of Technology found surprising con...
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Epigenetic Changes Make Breast Cancer Cells Drug Resistant
Researchers have found that changes in the structure of the genome in breast cancer cells can make them resistant to drug therapies....
FEB 02, 2020
Cancer
FEB 02, 2020
These cosmetics damage breast cells' DNA
A new approach to studying the effects of two common chemicals used in cosmetics and sunscreens found they can cause DNA damage in breast cells at surprisi...
MAR 03, 2020
Cell & Molecular Biology
MAR 03, 2020
New CRISPR-HOT Technique Can Color Cells and Genes
Since the CRISPR/Cas9 editing tool was developed several years ago, many scientists have modified and improved it for different applications....
Loading Comments...