JAN 19, 2020 6:11 AM PST

Scientists Create Neuromuscular Organoids That Contract

WRITTEN BY: Carmen Leitch

The muscles of the body move because of signals sent by the nervous system, which also takes in sensory information and relays it to the brain. Muscle and nerve cells meet at the neuromuscular junction. Neuromuscular disorders affect this junction or the motor neurons that are part of this system and include amyotrophic lateral sclerosis (ALS), multiple sclerosis, and muscular dystrophy. The study of these diseases and the development of therapeutics has been hindered in part by a lack of reliable cell culture models.

Researchers have now created a new kind of organoid, simplified versions of organs grown in the lab, which are made of cells that organize themselves into muscle and neurons, and model the neuromuscular system. In this process, the same progenitor cells give rise to motor neurons, Schwann cells, and skeletal muscle cells. Together, this group of cells sends oscillating signals through central pattern generator (CPG) circuits, which are required for functions like walking and breathing. The work, which will open up new avenues in the study of neuromuscular disease, has been reported in Cell Stem Cell.

"Our initial goal was to develop functional neuromuscular junctions, but the findings exceeded our expectations because the additional development of the CPG-like networks was an exciting but unexpected finding," said Dr. Mina Gouti, head of the Max Delbrück Center for Molecular Medicine (MDC) Stem Cell Modeling of Development and Disease Lab. "This has not been shown in a human in vitro model before, and offers entirely novel possibilities, including the study of CPG involvement in neurodegenerative diseases."

Researchers have had to grow motor neurons and muscle cells separately, then combine them to study the human neuromuscular junction, a strategy that also lacked the Schwann cells that would normally be found at the junction.

"It is very limiting if you only have an enriched system for neurons or muscles and then combine them," said the first author of the study, Jorge-Miguel Faustino Martins, a bioengineering graduate student in the Gouti lab. "It doesn't really mimic what happens in the embryo where you have both systems developing simultaneously. By combining the potential of stem cells with the powerful organoid technology, neuromuscular organoids present an exciting model to study neuromuscular diseases as well as a robust model for developmental studies where the formation of complex neuromuscular circuitry can be analyzed in real-time in [a] 3D microenvironment closer to the one present in the embryo."

The MDC scientists built on previous work and used human pluripotent stem cells to generate a specific type of axial stem cells. In 3D cell culture, these cells self-organized into the various cell types and began to mimic the CPG circuits.

"These organoids started contracting after 40 days in culture," said Gouti. "This activity was driven by the release of [the] neurotransmitter acetylcholine from the resident motor neurons in the organoid and was not due to spontaneous muscle activity seen in other systems. We were able to show that because pharmacological blocking of the acetylcholine receptors was sufficient to abolish muscle contraction."

Learn more about diseases of the neuromuscular system from the video.

Sources: AAAS/Eurekalert! via Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cell Stem Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 15, 2021
Genetics & Genomics
Genes Seem to Significantly Impact the Results We Get From Exercise
OCT 15, 2021
Genes Seem to Significantly Impact the Results We Get From Exercise
Individual health is shaped by many different factors, including the sequences and expression levels of genes, the makeu ...
OCT 25, 2021
Cell & Molecular Biology
How Fat Cells May Influence Cognitive Decline
OCT 25, 2021
How Fat Cells May Influence Cognitive Decline
Some research has indicated that a Western diet, which is high in processed foods, sugars, and fats, may be contributing ...
OCT 28, 2021
Cell & Molecular Biology
The Production & Export of Ribosomal Subunits is Caught on Video
OCT 28, 2021
The Production & Export of Ribosomal Subunits is Caught on Video
Protein production is essential for life; cells use DNA to transcribe active genes into RNA sequences, and ribosomes tra ...
NOV 22, 2021
Cancer
A New Treatment Option for Patients with Cancer in the Eye
NOV 22, 2021
A New Treatment Option for Patients with Cancer in the Eye
Uveal melanoma (UM) is a rare malignancy characterized by the formation of cancer cells in the tissues of the eye. UM be ...
NOV 30, 2021
Drug Discovery & Development
Enabling new levels of quantification with the SCIEX 7500 system - powered by SCIEX OS Software
NOV 30, 2021
Enabling new levels of quantification with the SCIEX 7500 system - powered by SCIEX OS Software
Sensitivity is a fundamental performance characteristic of a mass spectrometer The SCIEX 7500 system is enabling new lev ...
NOV 26, 2021
Coronavirus
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
NOV 26, 2021
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
On Thursday, November 2021, South African health officials announced that they had identified a new variant of the pande ...
Loading Comments...