JAN 19, 2020 6:11 AM PST

Scientists Create Neuromuscular Organoids That Contract

WRITTEN BY: Carmen Leitch

The muscles of the body move because of signals sent by the nervous system, which also takes in sensory information and relays it to the brain. Muscle and nerve cells meet at the neuromuscular junction. Neuromuscular disorders affect this junction or the motor neurons that are part of this system and include amyotrophic lateral sclerosis (ALS), multiple sclerosis, and muscular dystrophy. The study of these diseases and the development of therapeutics has been hindered in part by a lack of reliable cell culture models.

Researchers have now created a new kind of organoid, simplified versions of organs grown in the lab, which are made of cells that organize themselves into muscle and neurons, and model the neuromuscular system. In this process, the same progenitor cells give rise to motor neurons, Schwann cells, and skeletal muscle cells. Together, this group of cells sends oscillating signals through central pattern generator (CPG) circuits, which are required for functions like walking and breathing. The work, which will open up new avenues in the study of neuromuscular disease, has been reported in Cell Stem Cell.

"Our initial goal was to develop functional neuromuscular junctions, but the findings exceeded our expectations because the additional development of the CPG-like networks was an exciting but unexpected finding," said Dr. Mina Gouti, head of the Max Delbrück Center for Molecular Medicine (MDC) Stem Cell Modeling of Development and Disease Lab. "This has not been shown in a human in vitro model before, and offers entirely novel possibilities, including the study of CPG involvement in neurodegenerative diseases."

Researchers have had to grow motor neurons and muscle cells separately, then combine them to study the human neuromuscular junction, a strategy that also lacked the Schwann cells that would normally be found at the junction.

"It is very limiting if you only have an enriched system for neurons or muscles and then combine them," said the first author of the study, Jorge-Miguel Faustino Martins, a bioengineering graduate student in the Gouti lab. "It doesn't really mimic what happens in the embryo where you have both systems developing simultaneously. By combining the potential of stem cells with the powerful organoid technology, neuromuscular organoids present an exciting model to study neuromuscular diseases as well as a robust model for developmental studies where the formation of complex neuromuscular circuitry can be analyzed in real-time in [a] 3D microenvironment closer to the one present in the embryo."

The MDC scientists built on previous work and used human pluripotent stem cells to generate a specific type of axial stem cells. In 3D cell culture, these cells self-organized into the various cell types and began to mimic the CPG circuits.

"These organoids started contracting after 40 days in culture," said Gouti. "This activity was driven by the release of [the] neurotransmitter acetylcholine from the resident motor neurons in the organoid and was not due to spontaneous muscle activity seen in other systems. We were able to show that because pharmacological blocking of the acetylcholine receptors was sufficient to abolish muscle contraction."

Learn more about diseases of the neuromuscular system from the video.

Sources: AAAS/Eurekalert! via Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cell Stem Cell

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 25, 2022
Cell & Molecular Biology
From sample collection straight to RT-qPCR
AUG 25, 2022
From sample collection straight to RT-qPCR
Skip the nucleic acid purification step in your cancer detection workflow. Learn more about how Thermo Fisher Scientific ...
JUL 25, 2022
Genetics & Genomics
Genetic Recombination Appears to be Common in the Human Genome
JUL 25, 2022
Genetic Recombination Appears to be Common in the Human Genome
When the genomes of parents come together to create the genome of a child, their DNA recombines; similar parts are rearr ...
AUG 10, 2022
Genetics & Genomics
CRISPR/Cas9 Gene Editing can be Toxic to Cells & Disrupt Genome Stability
AUG 10, 2022
CRISPR/Cas9 Gene Editing can be Toxic to Cells & Disrupt Genome Stability
Errors in human genes can lead to many different types of diseases, and scientists have been searching for ways to corre ...
AUG 24, 2022
Immunology
Immune Cells Can Use 'Waste' as a Powerful Fuel
AUG 24, 2022
Immune Cells Can Use 'Waste' as a Powerful Fuel
T cells are on the front lines of the immune system, monitoring the body for pathogens, and springing into action when t ...
SEP 13, 2022
Immunology
How Cell 'Waste' Boosts Immune Cells' Fight Against Cancer
SEP 13, 2022
How Cell 'Waste' Boosts Immune Cells' Fight Against Cancer
It seems there is a lot more to lactate than we knew.
OCT 02, 2022
Cell & Molecular Biology
In Some Animals, Early Movements Can Have a Big Impact
OCT 02, 2022
In Some Animals, Early Movements Can Have a Big Impact
The Ikmi group at EMBL has shown that exercise has an important influence on the sea anemone.
Loading Comments...