JAN 21, 2020 2:57 PM PST

Repurposing Existing Drugs to Treat Cancer

WRITTEN BY: Carmen Leitch

Even after the complicated task of drug development, pharmaceuticals have to be rigorously tested before they can be offered to patients, so it can be much easier to find more than one application for an existing medication. Scientists have now tested a wide variety of drugs that are used to treat many different conditions to see if they had any anti-cancer effect. They were surprised to find that nearly fifty of the ones they assessed, including drugs for alcoholism, diabetes, inflammation, and pet medication for arthritis, exhibited anti-cancer activity that was previously unknown. The work has been reported in Nature Cancer.

"We thought we'd be lucky if we found even a single compound with anti-cancer properties, but we were surprised to find so many," said Professor Todd Golub, chief scientific officer and director of the Cancer Program at the Broad Institute of MIT and Harvard, and Charles A. Dana Investigator in Human Cancer Genetics at Dana-Farber.

This work utilized a collection of around 6,000 drugs that have either been proven to be safe in clinical trials or are approved by the Food and Drug Administration; it's called the Drug Repurposing Hub. The researchers tagged 578 human cancer cell lines with DNA barcodes so the vast number of cells could be pooled and exposed to the many medications. The survival rate of the various cancer cells was measured so the investigators could determine which of the drugs kill cancer.

"We created the repurposing hub to enable researchers to make these kinds of serendipitous discoveries in a more deliberate way," said the first author of the study Steven Corsello, an oncologist at Dana-Farber and founder of the Drug Repurposing Hub.

The researchers discovered the anti-cancer activity of fifty drugs, some of which killed selectively, while others destroyed cancer cells in surprising ways.

"Most existing cancer drugs work by blocking proteins, but we're finding that compounds can act through other mechanisms," said Corsello. Some of these drugs don't work by interfering with a protein; they stabilize a chemical interaction or activate a protein, for example. This cell-survival-based approach made identifying these mechanisms easier, said Corsello.

Image credit: Pixabay

In another case, cancer cells were killed by drugs that interacting with something unknown. For example, tepoxalin is used to treat osteoarthritis in dogs, and this anti-inflammatory medication kills cancer after acting on an unknown target in cells that express high levels of a protein called MDR1.

Genetic characteristics like methylation levels and mutations in the cancer cell lines enabled the researchers to predict which drugs would kill them. For example, cells that carried mutations that reduced their metallothionein protein levels were killed by a drug for alcohol dependence, called Antabuse. If cells expressed a certain sulfate transporter called SLC26A2, they were susceptible to drugs that contain vanadium.

"The genomic features gave us some initial hypotheses about how the drugs could be acting, which we can then take back to study in the lab," said Corsello. "Our understanding of how these drugs kill cancer cells gives us a starting point for developing new therapies. This is a great initial dataset, but certainly, there will be a great benefit to expanding this approach in the future."

Sources: AAAS/Eurekalert! via Broad Institute of MIT and Harvard, Nature Cancer

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 03, 2020
Cell & Molecular Biology
MAY 03, 2020
How One Protein is Linked to Three Different Brain Disorders
The accumulation of aberrant, misfolded proteins is a known feature of several different kinds of brain diseases.
MAY 18, 2020
Microbiology
MAY 18, 2020
An Antibody Against SARS May Neutralize SARS-CoV-2
SARS-CoV caused an outbreak of SARS in 2003. Samples collected from those patients back then may help us against SARS-Co ...
MAY 20, 2020
Cardiology
MAY 20, 2020
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
For some, working out just doesn’t pay off. A recent study published in Cardiovascular Research by the H ...
JUN 15, 2020
Genetics & Genomics
JUN 15, 2020
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder, in which the immune system attacks an insulating sheath that coats ne ...
JUN 25, 2020
Immunology
JUN 25, 2020
The Protein That Orchestrates Cells' Dance of Death
When cells become diseased or infected, a “suicide switch” is triggered, preventing neighboring cells from b ...
JUL 08, 2020
Cell & Molecular Biology
JUL 08, 2020
How Caffeine Can Aid Lizard Conservation Efforts
Lizards are thought to be under threat due to habitat loss, predation, climate change, and other factors worldwide.
Loading Comments...