MAR 09, 2020 1:03 PM PDT

Scientists 3D Bioprint Tumor Models and Vasculature

WRITTEN BY: Carmen Leitch

A new material has been discovered that can be used to 3D print structures that resemble vasculature. The biomaterial is created using a protein that can self-assemble when it's exposed to another chemical. The flexible parts of the proteins strongly interact with graphene oxide, when mixed they form an ordered structure. By controlling the manner in which the components are mixed, the assembly of structures can be guided, and used in a 3D printer. In work reported in Nature Communications, the material was used to generate tubular structures that are similar in some ways to vascular tissue.

Close-up of a tubular structure made by simultaneous printing and self-assembling between graphene oxide and a protein. / Credit: Professor Alvaro Mata

"This work offers opportunities in biofabrication by enabling simultaneous top-down 3D bioprinting and bottom-up self-assembly of synthetic and biological components in an orderly manner from the nanoscale," said the research leader Professor Alvaro Mata of the University of Nottingham. "Here, we are biofabricating micro-scale capillary-like fluidic structures that are compatible with cells, exhibit physiologically relevant properties, and have the capacity to withstand flow. This could enable the recreation of vasculature in the lab and have implications in the development of safer and more efficient drugs, meaning treatments could potentially reach patients much more quickly."

In another research study reported in Science Advances, investigators used 3D bioprinting to create a model of glioblastomas, aggressive brain tumors that are made of various types of cells and are difficult to treat. The researchers used patient cells in a bioink to print tissue along with vasculature, which enabled the tissue to survive for months.

"There is a need to understand the biology and the complexity of the glioblastoma," said Xavier Intes, a professor of biomedical engineering at Rensselaer Polytechnic Institute. "What's known is that glioblastomas are very complex in terms of their makeup, and this can differ from patient to patient. We developed a new technology that allows us to go deeper than fluorescence microscopy. It allows us to see, first, if the cells are growing, and then, if they respond to the drug."

In another study reported in Nature Communications, scientists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) and Northwestern University have engineered a 4D printer that is able to recapitulate the patterning on the outside of cells. Nanopatterning can now be performed on a surface that has molecules attached. Researchers will be able to create precise and delicate 4D structures with a tailored chemical composition.

The above Lady Liberty image illustrates the capabilities of polymer brush hypersurface photolithography. Fluorescent polymer brushes were printed from initiators on the surface, and variations in color densities correspond to differences in polymer heights, which can be controlled independently at each pixel in the image. / Credit: Advanced Science Research Center

"I am often asked if I've used this instrument to print a specific chemical or prepare a particular system," said the primary investigator of the study Adam Braunschweig, a faculty member with the CUNY ASRC Nanoscience Initiative and The Graduate Center and Hunter College Chemistry Departments. "My response is that we've created a new tool for performing organic chemistry on surfaces, and its usage and application are only limited by the imagination of the user and their knowledge of organic chemistry."

Sources: AAAS/Eurekalert! Via University of Nottingham, Wu et al Nature Communications 2020, Rensselaer Polytechnic Institute, Science Advances, Advanced Science Research Center, GC/CUNY, Carbonell et al Nature Communications 2020

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 01, 2021
Cell & Molecular Biology
Dead Cells Can Teach Us About Life's Origins
FEB 01, 2021
Dead Cells Can Teach Us About Life's Origins
When an organism dies, it begins to decay. It's long been assumed that after death, the cells in an organism break down ...
FEB 08, 2021
Cell & Molecular Biology
Stem Cell Therapy is Now Suitable for Dogs
FEB 08, 2021
Stem Cell Therapy is Now Suitable for Dogs
With good food and exercise, many dogs can live a long and healthy life. But some suffer from chronic conditions that ca ...
FEB 16, 2021
Immunology
Hugs From Immune Cells Heal Muscle
FEB 16, 2021
Hugs From Immune Cells Heal Muscle
Australian researchers have discovered a regenerative factor produced by immune cells that drives the repair and regener ...
FEB 26, 2021
Genetics & Genomics
New Genes Can Form From 'Jumping" Gene Fusions
FEB 26, 2021
New Genes Can Form From 'Jumping" Gene Fusions
Some genes don't stay in the same place in the genome. Sometimes called jumping genes or transposons, this genetic mater ...
MAR 28, 2021
Plants & Animals
The Protein That Carnivorous Plants Use To Hunt
MAR 28, 2021
The Protein That Carnivorous Plants Use To Hunt
The Venus flytrap is famous for its ability to snap its leaves shut when they're triggered by the touch of an insect. Re ...
APR 16, 2021
Genetics & Genomics
Researchers Engineer Human-Monkey Chimera Embryos
APR 16, 2021
Researchers Engineer Human-Monkey Chimera Embryos
A chimera human-monkey blastocyst is seen in this image by Weizhi Ji of the Kunming University of Science and Technology ...
Loading Comments...