MAR 09, 2020 1:03 PM PDT

Scientists 3D Bioprint Tumor Models and Vasculature

WRITTEN BY: Carmen Leitch

A new material has been discovered that can be used to 3D print structures that resemble vasculature. The biomaterial is created using a protein that can self-assemble when it's exposed to another chemical. The flexible parts of the proteins strongly interact with graphene oxide, when mixed they form an ordered structure. By controlling the manner in which the components are mixed, the assembly of structures can be guided, and used in a 3D printer. In work reported in Nature Communications, the material was used to generate tubular structures that are similar in some ways to vascular tissue.

Close-up of a tubular structure made by simultaneous printing and self-assembling between graphene oxide and a protein. / Credit: Professor Alvaro Mata

"This work offers opportunities in biofabrication by enabling simultaneous top-down 3D bioprinting and bottom-up self-assembly of synthetic and biological components in an orderly manner from the nanoscale," said the research leader Professor Alvaro Mata of the University of Nottingham. "Here, we are biofabricating micro-scale capillary-like fluidic structures that are compatible with cells, exhibit physiologically relevant properties, and have the capacity to withstand flow. This could enable the recreation of vasculature in the lab and have implications in the development of safer and more efficient drugs, meaning treatments could potentially reach patients much more quickly."

In another research study reported in Science Advances, investigators used 3D bioprinting to create a model of glioblastomas, aggressive brain tumors that are made of various types of cells and are difficult to treat. The researchers used patient cells in a bioink to print tissue along with vasculature, which enabled the tissue to survive for months.

"There is a need to understand the biology and the complexity of the glioblastoma," said Xavier Intes, a professor of biomedical engineering at Rensselaer Polytechnic Institute. "What's known is that glioblastomas are very complex in terms of their makeup, and this can differ from patient to patient. We developed a new technology that allows us to go deeper than fluorescence microscopy. It allows us to see, first, if the cells are growing, and then, if they respond to the drug."

In another study reported in Nature Communications, scientists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) and Northwestern University have engineered a 4D printer that is able to recapitulate the patterning on the outside of cells. Nanopatterning can now be performed on a surface that has molecules attached. Researchers will be able to create precise and delicate 4D structures with a tailored chemical composition.

The above Lady Liberty image illustrates the capabilities of polymer brush hypersurface photolithography. Fluorescent polymer brushes were printed from initiators on the surface, and variations in color densities correspond to differences in polymer heights, which can be controlled independently at each pixel in the image. / Credit: Advanced Science Research Center

"I am often asked if I've used this instrument to print a specific chemical or prepare a particular system," said the primary investigator of the study Adam Braunschweig, a faculty member with the CUNY ASRC Nanoscience Initiative and The Graduate Center and Hunter College Chemistry Departments. "My response is that we've created a new tool for performing organic chemistry on surfaces, and its usage and application are only limited by the imagination of the user and their knowledge of organic chemistry."

Sources: AAAS/Eurekalert! Via University of Nottingham, Wu et al Nature Communications 2020, Rensselaer Polytechnic Institute, Science Advances, Advanced Science Research Center, GC/CUNY, Carbonell et al Nature Communications 2020

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 15, 2020
Genetics & Genomics
MAR 15, 2020
Insight Into Neuronal Growth and Memory Formation
Now scientists have learned more about the transport of mRNA in neurons, and the storage and formation of memories.
MAR 27, 2020
Genetics & Genomics
MAR 27, 2020
Expanding the Genomic Regions That Can Be Targeted With CRISPR
CRISPR gene-editing technology has sparked a revolution in biomedical research and is poised to have far-reaching applic ...
APR 13, 2020
Neuroscience
APR 13, 2020
The Memory Cells that Help Us Interpret Different Situations
Neuroscientists from MIT have identified cell populations that encode different parts of an overall experience. Like the ...
APR 15, 2020
Cell & Molecular Biology
APR 15, 2020
Sugar's Appeal Lies in a Circuit That Connects the Gut & Brain
New work may help explain why sugar cravings are so hard to satisfy.
MAY 20, 2020
Cell & Molecular Biology
MAY 20, 2020
Researchers Detect a Vulnerability in Viruses
Myriad organisms share this planet, and there is an ongoing evolutionary arms race between competing traits or species, ...
MAY 26, 2020
Immunology
MAY 26, 2020
The Hunt for Rare Immune Cells, to InfinityFlow and Beyond
The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopu ...
Loading Comments...