SEP 13, 2020 6:20 AM PDT

RNA Found on the Surface of Human Cells

WRITTEN BY: Carmen Leitch

The surface of a cell carries many features to help it carry out its functions, communicate with other cells, gather information about its environment, and more, as illustrated in the video below. Scientists have now found that a molecule thought to be involved primarily in the regulation of genes and the production of proteins, RNA, can also be found on the surface of human cells. These RNAs have been termed membrane-associated extracellular RNA (maxRNA), and they are present on normal cells, suggesting that RNA has even more functions than we realized. The findings have been reported in Genome Biology.

"The cell's surface is to a cell like the face is to a person," said Sheng Zhong, a bioengineering professor at the University of California (UC) San Diego Jacobs School of Engineering and corresponding study author. "It is the most important part for recognizing what type of cell it is, for example, a good actor like a T cell or a bad actor like a tumor cell, and it aids in communication and interactions."

While we know the human genome generates RNA so that the cell can use it to produce proteins, and that some RNAs from the human genome are capable of regulating other genes, it was thought that in most cases, cells with intact membranes did not have RNAs on their surface. This work shows we have more to learn.

"This discovery expands our ability to interpret the human genome because we now know a portion of the human genome may also regulate how a cell presents itself and interacts with other cells through the production of maxRNA," said the first study author Norman Huang, a bioengineering graduate student at UC San Diego.

This work may help researchers create better drugs or therapeutics strategies for disease treatment. MaxRNA is easy to access; it sits on the cell's surface, so it could be targeted more easily than the RNA that's inside of cells. Antisense oligonucleotides are complementary sequences that can bind to RNA molecules and inactive them, for example.

(Left) A hypothetical model of the relative positions of FISH probes (red arrowheads) on a membrane-bound RNA fragment. (Right) A single molecule RNA fluorescence in situ hybridization image of maxRNAs (yellow arrows). / Credit: Zhong Lab

The researchers developed nanotechnology called Surface-seq that can scan for RNA on the surfaces of mouse or human cells. The cell membrane can be extracted and modeled around polymer cores to generate nanosponges, where the cell membrane retains its orientation, and the surface molecules remain facing outwards. Intracellular contents can be removed, leaving only the RNA that is membrane-associated. This maxRNA was isolated and characterized in this way by the investigators to create a Surface-seq library.

Now the scientists want to learn more about how maxRNA is moved to the cell surface and how it may be contributing to various cellular processes.

Sources: AAAS/Eurekalert! via University of California, San Diego, Genome Biology

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 28, 2022
Drug Discovery & Development
Keto Molecule Shows Promise for Treating Colorectal Cancer
APR 28, 2022
Keto Molecule Shows Promise for Treating Colorectal Cancer
A molecule produced when on low-carbohydrate ketogenic diets suppresses the growth of colorectal tumors in the lab. The ...
MAY 14, 2022
Immunology
A Novel Trigger for Cell Death is Identified
MAY 14, 2022
A Novel Trigger for Cell Death is Identified
Cell death is an important natural process the body uses to maintain health; dysfunctional or unhealthy cells have to be ...
JUN 21, 2022
Cell & Molecular Biology
From sample collection straight to RT-qPCR
JUN 21, 2022
From sample collection straight to RT-qPCR
Skip the nucleic acid purification step in your cancer detection workflow. Learn more about how Thermo Fisher Scientific ...
JUN 20, 2022
Cell & Molecular Biology
Rethinking What We Know About Blood Cell Formation
JUN 20, 2022
Rethinking What We Know About Blood Cell Formation
An image by Sachin H. Patel/Boston Children's Hospital shows embryonic multipotent progenitor cells in a mouse embryo's ...
JUN 28, 2022
Immunology
How the Thymus Trains the Immune System
JUN 28, 2022
How the Thymus Trains the Immune System
For centuries, the thymus was dismissed as a vestigial organ. But in the 60s, researchers suggested that it was actually ...
JUL 01, 2022
Neuroscience
Inflammatory Factor Triggers Insulin Release Upon Seeing Food
JUL 01, 2022
Inflammatory Factor Triggers Insulin Release Upon Seeing Food
Researchers found that insulin release upon seeing or smelling appetizing food depends on a short-term inflammatory resp ...
Loading Comments...