NOV 08, 2015 02:16 PM PST

How Listeria monocytogenes has Evolved to Persist in Foods and Cause Outbreaks

L. monocytogenes is a bacteria that can be found anywhere in nature. It is a psychrotolerant pathogen, meaning, that it is able to survive and even grow at refrigeration temperatures. Outbreaks of listeriosis generally take place over a long period of time and are caused by refrigerated ready-to-eat foods such as milk, cheeses and deli meats. According to a recent report released by the Interagency Food Safety Analytics Collaboration (IFSAC) Project, L. monocytogenes is considered a high priority pathogen due to the frequency and severity of the illness it causes as well as its susceptibility to targeted interventions. It is estimated to be the cause of 94 % and 15.9 % of hospitalizations and mortalities, respectively, linked to foodborne illness.

L. monocytogenes isolates divide into four distinct phylogenetic lineages. Isolates in lineage I are responsible for the majority of foodborne outbreaks. Isolates in lineage II have been implicated in large epidemics and are the cause of sporadic cases of foodborne illness. Lineage III and IV isolates are rarely associated with disease in humans.
 
Scientists use multi-locus sequence typing (MLST) to study the evolution of L. monocytogenes and their ability to persist in non-host environments such as food processing plants.


Scientists from North Dakota State University used a molecular typing technique to investigate the genetic diversity of 124 L. monocytogenes isolates from various sources in order to determine if there was any correlation between the ability of isolates to cause disease and their genetic makeup. They focused on isolates from lineages I and II since they are most associated with disease in humans. Isolates were inoculated into a growth medium that was limited in nutrients to test the ability of each isolates to grow in an environment not ideal for growth, such as a food processing environment. They also used multi-locus sequence typing (MLST) to determine the genetic characterization of each isolate. 

The isolates had variable growth rates in the nutrient-limited medium however; scientists were unable to determine if there was a link between growth rate and a specific lineage or serotype. Isolates in lineage I had significantly lower growth rates compared to those in lineage II. Genetic characterization using (MLST) revealed that the 124 isolates represented 81 different sequence types and 33 different clonal complexes, indicating the diversity of the isolates used in this study. The authors were unable to make any correlations between serotype or source of the isolates (human, food, environment or animal) and growth rate. However; authors concluded that the ability if lineage II isolates to grow faster than lineage I in nutrient-limited medium may facilitate their ability to persist in non-host environments leading to a higher risk of food contamination and transmission of the pathogen through food to humans. This study also highlights the importance of molecular subtyping in evolutionary analysis in pathogens to facilitate surveillance, detection and control of pathogens.

Source: Foodborne Pathogens and Disease; IFSAC; Emerging Infectious Diseases; LabRoots; Genetic Diversity in Microorganisms
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
AUG 04, 2018
Cell & Molecular Biology
AUG 04, 2018
Bioengineered Lung Successfully Grown and Transplanted
The complexity of human organs has made them difficult to engineer, but real progress is being made....
AUG 12, 2018
Genetics & Genomics
AUG 12, 2018
Bringing Genetics Research to the Developing World
Researchers want to ensure that technology is distributed equitably, to benefit everyone....
AUG 24, 2018
Cell & Molecular Biology
AUG 24, 2018
Chronic Allergies can Change Cells
Chronic rhinosinusitis is different from allergies; it leads to serious inflammation and swelling in the sinuses that can last for years....
AUG 28, 2018
Cell & Molecular Biology
AUG 28, 2018
Finding the Source of a Common Immune Cell
Neutrophils are a highly abundant type of immune cell, outnumbering every other kind that runs through the bloodstream....
OCT 03, 2018
Neuroscience
OCT 03, 2018
Towards Predicting Autism In Pregnancy
Autism is a growing health concern for medical professionals, educators, patients, and family. The latest numbers from the CDC (2014) put the incidence of ...
OCT 13, 2018
Genetics & Genomics
OCT 13, 2018
A Better Way to Analyze Epigenetic Tags
This improved technology does not harm the DNA under analysis....
Loading Comments...