NOV 12, 2015 01:48 PM PST

The Difference between Your Real Age and Your Epigenetic Age

WRITTEN BY: Sarah Hertrich
2 15 1985
Our DNA encodes genes which express specific patterns that lead to the production of a specific protein which has a specific function. When one gene is turned on, it may cause neighboring genes to also be turned on. In some cases, these genes may remain turned on for many generations even if it was only exposed to a certain signal for an instance. When gene expression patterns are inherited in the absence of gene mutations and the initiating signal, it is known as epigenetic regulation. One way that expression patterns are inherited is through DNA methylation which typically switches the expression of a certain gene off. Researchers have linked abnormal DNA methylation to several human diseases.



Scientists have been using DNA methylation as a marker to estimate their “epigenetic age” which is a concept that can be considered a form of biological age. Epigenetic age is estimated to be within about 3 years of actual age on average. The difference between epigenetic age and actual age is known as age acceleration (AA). If a person has a positive AA, it means that their biological age is greater than their actual age and if a person has a negative AA it means their biological age is less than their actual age. AA has been found to be associated with health conditions such as obesity, Down’s syndrome, HIV, physical and cognitive fitness and mortality in older individuals. Until recently there has been no research on the prenatal factors that affect AA in children.
 
Accelerated ageing (AA) has been associated with obesity, Down's syndrome and HIV.


Researchers from the University of Bristol in Bristol, UK used the Horvath age estimation method to determine the epigenetic age of 1018 mother-child pairs from the Avon Longitudinal Study of Parents and Children. Associations were discovered between AA and sex, birth weight and whether or not birth was performed by caesarean section. AA was also affected by behaviors and characteristics of the mother prior to birth including smoking, weight, BMI and her selenium and cholesterol levels. Children from non-drinkers had a higher AA on average which appeared to resolve when the infant progressed into childhood. In addition, they found that early life exposures to clinically relevant variables are associated with AA in adolescence. Further studies should be completed to understand the factors that affect epigenetic aging as well as AA in order to develop treatments and prevention for health conditions associated with abnormal DNA methylation mediated by epigenetic regulation.

Source: Human Molecular Genetics; Molecular Biology of the Gene (Sixth Edition)
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
JUL 04, 2018
Microbiology
JUL 04, 2018
Revealing How Gut Bacteria can Impact our Health
Our GI tract pays host to trillions of microbes, which have been shown to play a highly influential role in our health and well-being.
JUL 10, 2018
Cell & Molecular Biology
JUL 10, 2018
Newly Found Enzyme can Help Turn Plant Waste to Plastic
Scientists discovered an enzyme that can harvest a versatile molecule from trash.
JUL 12, 2018
Cell & Molecular Biology
JUL 12, 2018
New and Improved Ways to Create Stem Cells
New techniques that can make stem cells could have a big impact on therapeutics.
JUL 17, 2018
Cell & Molecular Biology
JUL 17, 2018
A New Player in the Control of Cell Division
Oil and water don't mix; cells can take advantage of that phenomenon, phase separation, to organize stuff without using membranes
JUL 25, 2018
Cell & Molecular Biology
JUL 25, 2018
Super-resolution Microscope Provides Insight Into Alzheimer's Plaques
Alzheimer's disease is the sixth leading cause of death in the US.
JUL 29, 2018
Microbiology
JUL 29, 2018
Revealing why Sepsis Causes Organs to Fail
The Staphylococcus aureus bacterium can cause devastating illnesses - called staph infections - and lead to organ failure.
Loading Comments...