JAN 20, 2016 09:18 PM PST

TSRI Scientists Solve 3D Structure of Protein that Guides the Immune System

Many cells have microscopic gates, called ion channels, which open to allow the flow of ions across the cell membrane. Thanks to these gates, cells can detect stimuli such as heat, pain, pressure and even spicy food.

In a new study, researchers from The Scripps Research Institute (TSRI) and the Duke University Medical Center reveal the three-dimensional structure of a crucial ion channel. Their findings depict this channel in more detail than ever before, shedding light on the channel’s possible role in immune functions such as detecting infection and inflammation.
 
A new study from The Scripps Research Institute (TSRI) and the Duke University Medical Center reveals the three-dimensional structure of a crucial ion channel, shedding light on its role in the immune system.

“Our ability to perceive our environment—which includes sensing temperature and pain—is heavily reliant on these channels. Understanding their 3D structure paves the way for the development of a wide variety of new therapies,” said TSRI biologist Gabe Lander, who was co-senior of author of the study with biochemist Seok-Yong Lee of the Duke University Medical Center.
 
The new study was published January 18, 2016, in the journal Nature Structural and Molecular Biology.

An Important Sensor

Lander and his colleagues focused on an ion channel called the transient receptor potential vanilloid-2 (TRPV2), which resides within the membranes of cells throughout the body. Previous research had suggested TRPV2 was involved in sensing physical stresses, such as changes in pressure and temperature, as well as in detecting immune challenges and activating the immune system’s T cells.

In the new study, the researchers used an imaging technique called cryo-electron microscopy, in which a sample is pelted with high-energy electrons. Through the use of new sample preparation techniques, computer programs and a new generation of cameras, researchers at TSRI have improved the potential resolution of cryo-electron microscopy images to the point that TRPV2 could be imaged with near-atomic precision.

“The fact that the field of cryo-electron microscopy has advanced to where we can now solve the structures of these small membrane-embedded complexes to such high resolution is exciting,” said TSRI Research Associate Mark Herzik Jr., who was co-first author of the study with Lejla Zubcevic of Duke University. “The methodological insights from this study will help advance other projects in the lab.”

When the researchers compared the structure of TRPV2 with TRPV1, a genetically similar ion channel found only in the nervous system, they noticed some significant differences. TRPV2’s architectural components near the central gate and the peripheral domains were in a previously unobserved configuration. Together, this led the authors to propose that this configuration represents a “desensitized” state, providing a new molecular snapshot of these ion channels at work.

“The TRVP2 ion channel is likely a global internal sensor—playing an important role in our immune response,” said Lander.

Lander said the next step is to find the structures of TRPV2 at different stages of opening and closing its gate. With the entire cycle imaged, researchers will have a better idea of how the ion channel works and how it might be manipulated therapeutically to treat autoimmune diseases.

The other co-authors on the paper, “Cryo-electron microscopy structure of the TRPV2 ion channel,” were Ben Chung and Zhirui Liu of the Duke University Medical Center.

This study was supported by the Duke University Medical Center, the National Institutes of Health (grants R01GM100894, DP2OD008380 and DP2EB020402), the Searle Scholars Program and The Pew Charitable Trusts.
_________
FOR MORE INFORMATION
Gabriel Lander Biosketch
Lander Lab Website
Nature Structural and Molecular Biology

This article was originally published on scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
JUN 30, 2018
Genetics & Genomics
JUN 30, 2018
Gene-editor Eases Autism Symptoms in Mouse Model
This is the first time a gene alteration has successfully changed behaviors associated with autism.
JUL 06, 2018
Videos
JUL 06, 2018
The Impact of Junk Food on the Brain
Researchers have found that junk food stimulates neurons in our brains that cause a sense of reward.
JUL 12, 2018
Neuroscience
JUL 12, 2018
Understanding Vascular Dementia
Dementia is a growing problem for healthcare providers, patients, and families. It’s estimated that 47 million people are living with dementia worldw
JUL 19, 2018
Videos
JUL 19, 2018
The Transition to Multicellular Life May Have Been Simple
It may have been relatively easy for complex organisms to form from one-celled microbes, researchers suggest.
AUG 01, 2018
Videos
AUG 01, 2018
Award-winning Images of Organoids From the Koch Institute
Every year, the Koch Institute at MIT shares some of the most stunning images produced at the research facility.
AUG 05, 2018
Cell & Molecular Biology
AUG 05, 2018
The Major Health Risks Posed by Cipro
In recent years, studies have shown that a once-popular class of antibiotics can have life-threatening side effects.
Loading Comments...