MAR 04, 2016 9:49 AM PST

‘Dial' on astrocytes means brain cells can be adjusted

Astrocytes are star-shaped cells in our brain that surround neurons and neural circuits, protecting them from injury and enabling them to function properly. In essence, one of their main roles is to “baby-sit” neurons.

It’s not been clear what mechanisms create and maintain differences among astrocytes, and allow them to fulfill specialized roles. But recently a team at McGill University discovered a dial-like structure on astrocytes that enables neurons to adjust astrocytes and ensure they provide the right kind of support.
 

"This is an extraordinary mechanism in the healthy, mature brain that creates diversity of brain cells," says Keith Murai. "Now, our goal is to see how this mechanism is affected in different brain diseases."


“This ‘dial’ is likely used to tune the astrocyte’s response in the normal brain but also in different diseases like Alzheimer’s or Parkinson’s or injuries such as stroke or trauma, for example,” explains Todd Farmer, the study’s first author and a postdoctoral fellow at the McGill University Health Centre. “Our findings help us to better understand the complexity of the brain and also grasp mechanisms that can be used to reduce brain injury and disease.”

The findings appear in Science.

“It was believed that astrocytes acquired their properties during the development of the brain and then they were hardwired in their roles,” says Keith Murai, an associate professor in the neurology and neurosurgery department at McGill University and the study’s senior author. “We have now discovered that astrocytes are actually incredibly flexible and potentially modifiable, which enables them to improve brain function or restore lost potential caused by disease.”

Murai and his colleagues conducted most of their experiments on mouse models and studied a specific pathway called the Sonic Hedgehog (SHH) signaling pathway, which is well known in brain development and cancer. By using a combination of advanced genetics, molecular approaches, and microscopy techniques they found that this signaling pathway is used in the adult brain in a completely novel way. They found the SHH pathway induced disparate changes in astrocytes in different brain regions.

“This is an extraordinary mechanism in the healthy, mature brain that creates diversity of brain cells,” says Murai. “Now, our goal is to see how this mechanism is affected in different brain diseases and determine if it can be harnessed to protect neurons and ultimately preserve brain function.”

The Canadian Institutes of Health Research, Brain Canada Foundation, and the Weston Brain Institute funded the study.

Source: McGill University

This article was originally published on futurity.org.

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
DEC 18, 2019
Drug Discovery & Development
DEC 18, 2019
A tool that simplifies the hunt for cancer drugs
Cells have long been the internal hubs for proteins that hold a wide variety of unique functions. Disorders on how a cell synthesizes a protein can affect ...
DEC 18, 2019
Genetics & Genomics
DEC 18, 2019
Learning More About The Genetic Adaptations Cancer Relies On
Cancer cells can adapt to mutations in the genome that might kill the cells by altering the activity of their genes....
DEC 22, 2019
Genetics & Genomics
DEC 22, 2019
New Gene Therapy Uses Exosomes to Reverse Disease
Researchers at Ohio State University have developed a new gene therapy that makes use of exosomes, fluid sacs released in cells, to carry therapeutic tools...
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 16, 2020
Cell & Molecular Biology
JAN 16, 2020
Understanding the Restorative Power of Sleep
Scientists have learned more about how sleep gets us ready to face the challenges of the day....
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive protein on the surface of T cells and t...
Loading Comments...