MAR 26, 2016 02:30 PM PDT

"Skinbow" Zebrafish Offers Insights into Skin Regeneration While Looking Insanely Pretty

WRITTEN BY: Cassidy Reich
Live imaging studies of epithelial tissue have thus far been limited by monochromatic tagging of specific epithelial cell subpopulations. A group at Duke University Medical Center lead by Kenneth Poss has overcome this limitation with the creation of the transgenic skinbow zebrafish. The goal behind this creation, in their words, is to  “provide a high-resolution quantification of transitory, dynamic, and collective activities of epithelial cells during homeostatic maintenance, as well as how these cell behaviors are modulated after injury or during disease.” Basically, by creating a zebrafish with individual cells permanently labeled with a specific color, they are able to track the regeneration of epithelial cells in homeostasis and following injury in real-time. Not only is the skinbow a powerful research tool that has provided insights into epithelial regeneration, it also looks insanely cool.
 

Before creating the skinbow zebrafish, the researchers identified three things they needed to make their vision a reality. They needed an adult epithelial tissue section that is highly regenerative and also easily accessible for imaging, a method for stably and individually labeling each cell in the epithelial tissue with an in vivo tag, and cell tracking software for large-scale surveillance. Using Brainbow-based multicolor labeling, they were able to individually label superficial epithelial cells (SECs) covering the zebrafish, and that is the skinbow used in these studies.

Epithelial tissue has a very specific structure. The cells in the superficial and suprabasal levels of epithelium do not undergo cell division, but are instead replenished by differentiated epithelial cells that are derived from a pool of stem cells located in the underlying basal layer. With skinbow, the researchers were able to track the normal cycle of epithelial regeneration and also how that process changes when the epithelium is repairing an injury. Check out the video below to see the colorful SECs in action and to hear from principal investigator Kenneth Poss.



Source: Developmental Cell
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
OCT 21, 2019
Cell & Molecular Biology
OCT 21, 2019
Investigating the Formation of Membrane-less Organelles
The cytoplasm of cells is about 80% water, but is full of a molecular mixture of stuff that was once thought to be disorganized and random....
OCT 21, 2019
Cell & Molecular Biology
OCT 21, 2019
Stem Cell Derived Natural Killer T Cells as Novel and Long-term Cancer Treatment
Hematopoietic stem cells are used to create a population of Natural Killer T-cells that could sustain and renew within the immune system, and attack cancer cells....
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Detecting DNA - Without Amplification
As genetic technologies rapidly advance, totally new approaches are now possible. One innovation is the CRISPR-Chip....
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
A More Precise Version of CRISPR/Cas9 is Created
A more accurate version of Cas9 has been created, reducing the number of off-target effects. It may be better suited for use in gene therapy....
OCT 21, 2019
Immunology
OCT 21, 2019
Circadian Rhythm Governs Immune Protection of the Gut
The circadian rhythm governs more than just waking and sleeping. The intricate functions of the digestive system rely on the ticking, clock-like rhythm as ...
OCT 21, 2019
Microbiology
OCT 21, 2019
Early Ancestor of Animals Can Group Together and Coordinate Their Movements
After observing unusual microorganisms that had been collected in Curaçao, researchers saw a strange thing....
Loading Comments...