MAR 26, 2016 2:30 PM PDT

"Skinbow" Zebrafish Offers Insights into Skin Regeneration While Looking Insanely Pretty

WRITTEN BY: Cassidy Reich
Live imaging studies of epithelial tissue have thus far been limited by monochromatic tagging of specific epithelial cell subpopulations. A group at Duke University Medical Center lead by Kenneth Poss has overcome this limitation with the creation of the transgenic skinbow zebrafish. The goal behind this creation, in their words, is to  “provide a high-resolution quantification of transitory, dynamic, and collective activities of epithelial cells during homeostatic maintenance, as well as how these cell behaviors are modulated after injury or during disease.” Basically, by creating a zebrafish with individual cells permanently labeled with a specific color, they are able to track the regeneration of epithelial cells in homeostasis and following injury in real-time. Not only is the skinbow a powerful research tool that has provided insights into epithelial regeneration, it also looks insanely cool.
 

Before creating the skinbow zebrafish, the researchers identified three things they needed to make their vision a reality. They needed an adult epithelial tissue section that is highly regenerative and also easily accessible for imaging, a method for stably and individually labeling each cell in the epithelial tissue with an in vivo tag, and cell tracking software for large-scale surveillance. Using Brainbow-based multicolor labeling, they were able to individually label superficial epithelial cells (SECs) covering the zebrafish, and that is the skinbow used in these studies.

Epithelial tissue has a very specific structure. The cells in the superficial and suprabasal levels of epithelium do not undergo cell division, but are instead replenished by differentiated epithelial cells that are derived from a pool of stem cells located in the underlying basal layer. With skinbow, the researchers were able to track the normal cycle of epithelial regeneration and also how that process changes when the epithelium is repairing an injury. Check out the video below to see the colorful SECs in action and to hear from principal investigator Kenneth Poss.



Source: Developmental Cell
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
DEC 27, 2020
Cell & Molecular Biology
Using Antibodies & Oligonucleotides to Control Specific Reactions
DEC 27, 2020
Using Antibodies & Oligonucleotides to Control Specific Reactions
Antibodies are naturally used by the body to bind targets on pathogens and neutralize them, and these specific interacti ...
DEC 27, 2020
Genetics & Genomics
Delivering DNA- & RNA-Based Therapies in a New Way
DEC 27, 2020
Delivering DNA- & RNA-Based Therapies in a New Way
Gene therapy holds tremendous promise for its potential to cure genetic diseases. We've also recently seen how critical ...
DEC 30, 2020
Cell & Molecular Biology
Measuring Electrical Differences Inside of Live Cells
DEC 30, 2020
Measuring Electrical Differences Inside of Live Cells
Electricity is a key aspect of life, and is required for organisms to move and communicate. The movement of tiny charged ...
JAN 10, 2021
Microbiology
Some Bacteria Know the Time
JAN 10, 2021
Some Bacteria Know the Time
People, animals, and even plants are known to have biological clocks, and new work has revealed that free-living bacteri ...
JAN 24, 2021
Microbiology
Cholesterol Enables SARS-CoV-2 to Invade & Create 'Mega-Cells'
JAN 24, 2021
Cholesterol Enables SARS-CoV-2 to Invade & Create 'Mega-Cells'
To cause the COVID-19 illness, the SARS-CoV-2 virus first has to get into cells. To do so, it uses something called a sp ...
JAN 28, 2021
Neuroscience
Immune Cells Destroy Synapses in Multiple Sclerosis
JAN 28, 2021
Immune Cells Destroy Synapses in Multiple Sclerosis
Researchers from Germany have found that Multiple sclerosis (MS)-associated inflammation in the cerebral cortex destroys ...
Loading Comments...