MAR 26, 2016 02:30 PM PDT

"Skinbow" Zebrafish Offers Insights into Skin Regeneration While Looking Insanely Pretty

WRITTEN BY: Cassidy Reich
Live imaging studies of epithelial tissue have thus far been limited by monochromatic tagging of specific epithelial cell subpopulations. A group at Duke University Medical Center lead by Kenneth Poss has overcome this limitation with the creation of the transgenic skinbow zebrafish. The goal behind this creation, in their words, is to  “provide a high-resolution quantification of transitory, dynamic, and collective activities of epithelial cells during homeostatic maintenance, as well as how these cell behaviors are modulated after injury or during disease.” Basically, by creating a zebrafish with individual cells permanently labeled with a specific color, they are able to track the regeneration of epithelial cells in homeostasis and following injury in real-time. Not only is the skinbow a powerful research tool that has provided insights into epithelial regeneration, it also looks insanely cool.
 

Before creating the skinbow zebrafish, the researchers identified three things they needed to make their vision a reality. They needed an adult epithelial tissue section that is highly regenerative and also easily accessible for imaging, a method for stably and individually labeling each cell in the epithelial tissue with an in vivo tag, and cell tracking software for large-scale surveillance. Using Brainbow-based multicolor labeling, they were able to individually label superficial epithelial cells (SECs) covering the zebrafish, and that is the skinbow used in these studies.

Epithelial tissue has a very specific structure. The cells in the superficial and suprabasal levels of epithelium do not undergo cell division, but are instead replenished by differentiated epithelial cells that are derived from a pool of stem cells located in the underlying basal layer. With skinbow, the researchers were able to track the normal cycle of epithelial regeneration and also how that process changes when the epithelium is repairing an injury. Check out the video below to see the colorful SECs in action and to hear from principal investigator Kenneth Poss.



Source: Developmental Cell
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
AUG 04, 2018
Cell & Molecular Biology
AUG 04, 2018
Bioengineered Lung Successfully Grown and Transplanted
The complexity of human organs has made them difficult to engineer, but real progress is being made....
AUG 06, 2018
Cell & Molecular Biology
AUG 06, 2018
Learning More About Addiction Relapse
Researchers studying cocaine addiction have managed to significantly reduce relapse rates in a preclinical model....
AUG 19, 2018
Technology
AUG 19, 2018
CRISPR Technology Seeks To Eliminate Genetic Diseases
Researchers at the University of Illinois have adapted to new CRISPR gene-editing technology that causes the cell's internal machinery to skip over a s...
AUG 23, 2018
Microbiology
AUG 23, 2018
Environmental Nanoparticles May be Harming Cells
Researchers suggest that we take time to learn more about the synthetic chemicals we're releasing into the environment....
SEP 18, 2018
Cell & Molecular Biology
SEP 18, 2018
Visualizing the Organization of Human Cells With Machine Learning
Instead of fluorescent labeling, scientists found a way to use computers to identify cellular structures....
SEP 24, 2018
Genetics & Genomics
SEP 24, 2018
Towards a Blood Test for Drowsy Driving
Driving is an everyday activity for many people around the world, and it comes with serious risks....
Loading Comments...