JUN 07, 2016 11:46 AM PDT

‘Junk DNA' Exposed - Transient Gene Expression Can Now Be Studied

WRITTEN BY: Carmen Leitch
2 3 616

Long regions of seemingly unimportant strands of DNA were named ‘junk DNA’ and long thought to be unimportant or at least, totally misunderstood. That view is shifting, however, as more and more regulatory signals are found to be in those areas; mutations in them can contribute to human disease.

 Genes that code for protein are transcribed as an mRNA intermediate and then translated to a functional protein. Genes that are regulatory or have other roles are transcribed as a functional, non-coding RNA. Image:Thomas Shafee

Typically, a gene in DNA will encode for a protein. Those genes, the corresponding RNA, and their protein products can be analyzed and manipulated in many ways as part of basic molecular biology. But not all genes are expressed in every place in the body at all time. Controlling that expression is vital to the proper function of cells, which makes the regulatory portions of DNA very important. The DNA that ends up getting expressed in cells as RNA is called the transcriptome.

"Regulatory DNA regions are essential for development in humans, tissue preservation, and the immune response, among others," explained Professor Patrick Cramer, a director at the Max Planck Institute for Biophysical Chemistry. "Furthermore, they play an important role in various diseases. For example, patients suffering from cancer or cardiovascular conditions show many mutations in exactly those DNA regions," he said.

Identifying and studying those governing regions is difficult though, because when DNA that does the regulating is active, it’s made into short-lived RNA transcripts that are used and then quickly degraded. But those fleeting transcripts that are so challenging to study are crucial activators of genes and play a prominent role in gene expression.

Scientists have now developed a way to capture those transcripts so they can be analyzed in depth. Researchers collaborating and working with Dr. Cramer have created a precise way to identify and capture RNA molecules, even those with a brief, transitory existence. The work was published in Science. They’ve called the new technique the TT-Seq (transient transcriptome sequencing) method, and it can gather and sequence all RNA segments that are made in cells over a period of 5 minutes – an insufficient amount of time to degrade even very transient RNA.

 An overview of 4sU-seq and TT-seq protocols

They use a molecule, 4-thiouridine (4sU), that gets incorporated into the RNA as it is made for a kind of tag, and then isolate whatever contains that tagging molecule for sequencing.

"The RNA molecules we caught with the TT-Seq method provide a snapshot of all DNA regions that were active in the cell at a certain time – the genes as well as the regulatory regions between genes that were so hard to find until now," Cramer said. "With TT-Seq we now have a suitable tool to learn more about how genes are controlled in different cell types and how gene regulatory programs work," added co-author Julien Gagneur, Professor of Computational Biology at the Technical University of Munich.

To learn more about the transcriptome, check out the video below.

 


Sources: Science, Technical University of Munich
 

 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 13, 2018
Cell & Molecular Biology
JUN 13, 2018
Concerns About the CRISPR/Cas9 Gene Editor
Hailed as a revolutionary technique that had many potential applications, two new studies show that we should proceed with caution.
JUL 05, 2018
Cell & Molecular Biology
JUL 05, 2018
Understanding the Molecular Impact of Blunt Force Trauma
Scientists want to learn more about the role of a specific protein in neurodegenerative disease that comes from impact trauma.
JUL 17, 2018
Cell & Molecular Biology
JUL 17, 2018
A New Player in the Control of Cell Division
Oil and water don't mix; cells can take advantage of that phenomenon, phase separation, to organize stuff without using membranes
JUL 20, 2018
Genetics & Genomics
JUL 20, 2018
Nanoparticle-based Gene Therapy Cures Disease in Fetal Mice
Although CRISPR has grabbed a lot of headlines in recent years, it is not the only gene-editing game in town.
JUL 26, 2018
Genetics & Genomics
JUL 26, 2018
When a Cancer Gene Switches Sides
All cells carry a gene named p53, which has a vital role in shielding the body from cancer. But it can betray cells too.
AUG 01, 2018
Videos
AUG 01, 2018
Award-winning Images of Organoids From the Koch Institute
Every year, the Koch Institute at MIT shares some of the most stunning images produced at the research facility.
Loading Comments...