AUG 27, 2016 11:14 AM PDT

Post Synaptic Density Formation and the Connection to Autism

WRITTEN BY: Carmen Leitch
Neurons signal to each other throughout the body using a connection called a synapse. While they are very small, they are critically important to how messages are sent in the body and brain. One part of the synapse is a dense layer of proteins on the membrane of the postsynaptic neuron, called the postsynaptic density (PSD). That compartment is proposed to be a vital orchestrator of neurotransmitters and is an important signaling structure. Mutations in genes that encode for proteins of the PSD have been implicated in the development of psychiatric disorders like schizophrenia and autism, and intellectual disabilities. Although PSDs have been a focus of study for 60 years, the mechanism behind their formation and dynamics are still not well understood. If you need a refresher on how neuronal synapses work, watch the video below from Khan Academy.
Researchers have now revealed more details of the PSD complex. Publishing in Cell, scientists at The Hong Kong University of Science and Technology (HKUST) show that two PSD proteins form a self-assembled structure in both live cells and test tubes. The proteins, SynGAP and PSD-95 are known to cause autism when mutated. 

Intriguingly, the SynGAP/PSD-95 assembly are stable droplets that behave like oil in the aqueous cytoplasm of cells in a phenomenon referred to as phase-transition. This could answer a long-standing mystery about the formation of PSDs. That oil-like behavior was disrupted, the researchers observed, when the SynGAP/PSD-95 proteins carry the mutations seen in autism cases.
The Synapse and the phase-transtition of SynGAP/PSD-95 complex / Credit: Cell Zeng et al
"SynGAP and PSD-95 are famous for their roles in learning and memory as well as their involvements in diseases like autisms and epilepsy when mutated, but exactly how these two proteins carry out their functions are not very clear" explained Mingjie Zhang, the leader of the research group and Chair of the Division of Life Science at HKUST. "Our studies of the SynGAP/PSD-95 complex, via a multifaceted approach, led to an unexpected finding that living neurons can "borrow" a very fundamental phenomena called phase-transition to place different functional units at specific cellular locations.” Zhang added, "everyone has seen phase transition in our daily life. Liquid water turning into ice is a form of phase transition. Living cells can selectively "pick" certain proteins or nucleic acids to undergo phase transition forming a non-membrane-enclosed cellular compartments, so their physiological functions can be regulated."
Mice carrying SynGAP mutations have hyper-excited synapses and show autistic symptoms. / Credit: Division of Life Science, HKUST
"Our work also provides mechanistic insights into why mutations altering the SynGAP/PSD-95 interaction can contribute to various brain disorders including seizure, autism, and ID, a spectrum of central nervous system diseases that have no treatments. We believe that our discovery will also inspire new ways to develop therapeutic methods for these devastating diseases to human society,” said Menglong Zeng, first author of the work.

"This study is only the beginning of teasing out how other proteins collectively contribute to the formation and brain activity-dependent alterations of PSD,” said Zhang. "We are also interested in trying to find out whether other synapses, the neuron/muscle connections for an example, also adopt the phase-transition strategy to build their PSDs".

Sources: Cell, AAAS/Eurekalert! via HKUST
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 09, 2020
Cell & Molecular Biology
MAR 09, 2020
Scientists 3D Bioprint Tumor Models and Vasculature
Researchers have made numerous advances in bioengineering, bioprinting, and nanolithography.
MAR 25, 2020
Clinical & Molecular DX
MAR 25, 2020
A coronavirus testing kit with glow-in-the-dark Mango?
A group of Canadian researchers is responding to a desperate need for COVID-19 diagnostic kits with their fluorescent im ...
APR 06, 2020
Immunology
APR 06, 2020
Clearing the Path for Dendritic Cells to Eliminate Tumors
  Dendritic cells are the sentinels of the immune system and use their “tree-like” projections to prese ...
APR 11, 2020
Cardiology
APR 11, 2020
Cell Transplant Repairs Brain After Stroke
Using cell therapy, researchers from Lund University in Sweden have successfully restored mobility and a sense of touch ...
APR 15, 2020
Cell & Molecular Biology
APR 15, 2020
Sugar's Appeal Lies in a Circuit That Connects the Gut & Brain
New work may help explain why sugar cravings are so hard to satisfy.
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
Loading Comments...