MAR 04, 2015 3:49 PM PST

Researchers Watch Evolution in Near Real Time

WRITTEN BY: Judy O'Rourke
Evolution brings improvements, but it's also a hotbed for lots of diseases that defy treatment.

We see this in pathogens like bacteria and parasites, which fend off our defenses and antimicrobial drugs. Cancer evolves, with rogue cells changing, spreading outside their limits, roaming far and wide in the body, where chemotherapy may not reach.
Saccharomyces cerevisiae (Yeast)
Researchers have devised a new technology called high-resolution lineage tracking, which allows them to keep close track of how populations of cells evolve.

"The technology has the potential to help us understand many processes important to infection and disease," says Sasha Levy, PhD, assistant professor of physical and quantitative biology, Lewis and Beatrice Laufer Center, Stony Brook University, New York.

"One avenue we are pursuing is to place it into pathogenic microbes to study how they develop resistance to antibiotics," he says. "We are looking into placing it into cancer cells to try to understand the fundamental rules by which cancer cells adapt and metastasize. We hope that gaining better understanding of the evolutionary dynamics of these disease processes will allow us to optimize treatment to slow their rates of progression."

Levy and his team created the genetic apparatus to place millions of unique, chance DNA sequences at a particular genomic spot in Saccharomyces cerevisiae (yeast). They then observed adaptive evolution take place.

He explains the process by comparing it to a review of history by using a tally of surnames, collected each year over a period of thousands of years. "Even with this limited information, you would be able to say a lot about history-you could tell which families were successful and when, which families were wiped out because of competition or war, and how families migrated," he says. "We did a similar thing in competing cell populations. But instead of tracking last names, we track DNA barcodes-tiny identifiers we place in the genome that allow us to uniquely identify a cell and its descendants."

"By taking a census of these barcodes over time, we can discover when a cell lineage becomes more fit and expands within the population," says Levy, who's also a professor in the Department of Biochemistry & Cell Biology, and the study's lead author. "By doing this on a massive scale-we tracked 500,000 cell lineages simultaneously-we can understand some fundamental properties about how cell populations compete with one another and evolve."

The project, which brings together biology and theoretical and applied physics, has logged key discoveries. "We have developed a general system to track cell lineages at high resolution," Levy says. "And we have developed the theory to make sense of this type of data, in order to study evolution in a more quantitative way."

The finding is significant as the evolution of sizable cell populations is the basis of about 30% of deaths worldwide-some as a result of bacteria, parasites, fungi, and cancer.

"I have always been excited to learn about how evolution works, but disappointed by our lack of tools to study it quantitatively," Levy says. "This caused a big chasm between what theorists were capable of predicting and what biologists could actually measure. I saw this project as an opportunity to narrow that chasm, just a little bit."

The study, titled "Quantitative evolutionary dynamics using high-resolution lineage tracking," is published in the journal Nature.
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
OCT 09, 2021
Cell & Molecular Biology
The Anti-Cancer, Copper-Binding Compounds Found in Fish
OCT 09, 2021
The Anti-Cancer, Copper-Binding Compounds Found in Fish
In the world's waterways, fish are confronted with endless challenges. For example, they have to defend themselves from ...
OCT 12, 2021
Microbiology
Revealing the Efficient Enzymes of Methane-Producing Microbes
OCT 12, 2021
Revealing the Efficient Enzymes of Methane-Producing Microbes
The atmospheric levels of methane, which is known to be a potent greenhouse gas, have been steadily increasing for many ...
OCT 14, 2021
Cell & Molecular Biology
Cutting Edge Tools Change Our View of the Nuclear Pore Complex
OCT 14, 2021
Cutting Edge Tools Change Our View of the Nuclear Pore Complex
There are many intricate molecular machines that perform essential functions, and this work has called a method used to ...
OCT 18, 2021
Cell & Molecular Biology
Learning More About the Molecular Basis of Appetite
OCT 18, 2021
Learning More About the Molecular Basis of Appetite
Neurons in the human brain play a crucial role in appetite, satiety, and metabolism. Research has revealed more about th ...
OCT 21, 2021
Cell & Molecular Biology
In a First, a Working Pig Kidney was Tested in a Person
OCT 21, 2021
In a First, a Working Pig Kidney was Tested in a Person
There are many people out there waiting on transplant lists for organs to become available. Sadly, many of those people ...
NOV 01, 2021
Health & Medicine
How Our Understanding of Cellular Reprogramming May Redefine Transplant Medicine
NOV 01, 2021
How Our Understanding of Cellular Reprogramming May Redefine Transplant Medicine
Liver disease represents a significant public health concern and was diagnosed in roughly 4.5 million adults i ...
Loading Comments...