MAR 04, 2015 3:49 PM PST

Researchers Watch Evolution in Near Real Time

WRITTEN BY: Judy O'Rourke
Evolution brings improvements, but it's also a hotbed for lots of diseases that defy treatment.

We see this in pathogens like bacteria and parasites, which fend off our defenses and antimicrobial drugs. Cancer evolves, with rogue cells changing, spreading outside their limits, roaming far and wide in the body, where chemotherapy may not reach.
Saccharomyces cerevisiae (Yeast)
Researchers have devised a new technology called high-resolution lineage tracking, which allows them to keep close track of how populations of cells evolve.

"The technology has the potential to help us understand many processes important to infection and disease," says Sasha Levy, PhD, assistant professor of physical and quantitative biology, Lewis and Beatrice Laufer Center, Stony Brook University, New York.

"One avenue we are pursuing is to place it into pathogenic microbes to study how they develop resistance to antibiotics," he says. "We are looking into placing it into cancer cells to try to understand the fundamental rules by which cancer cells adapt and metastasize. We hope that gaining better understanding of the evolutionary dynamics of these disease processes will allow us to optimize treatment to slow their rates of progression."

Levy and his team created the genetic apparatus to place millions of unique, chance DNA sequences at a particular genomic spot in Saccharomyces cerevisiae (yeast). They then observed adaptive evolution take place.

He explains the process by comparing it to a review of history by using a tally of surnames, collected each year over a period of thousands of years. "Even with this limited information, you would be able to say a lot about history-you could tell which families were successful and when, which families were wiped out because of competition or war, and how families migrated," he says. "We did a similar thing in competing cell populations. But instead of tracking last names, we track DNA barcodes-tiny identifiers we place in the genome that allow us to uniquely identify a cell and its descendants."

"By taking a census of these barcodes over time, we can discover when a cell lineage becomes more fit and expands within the population," says Levy, who's also a professor in the Department of Biochemistry & Cell Biology, and the study's lead author. "By doing this on a massive scale-we tracked 500,000 cell lineages simultaneously-we can understand some fundamental properties about how cell populations compete with one another and evolve."

The project, which brings together biology and theoretical and applied physics, has logged key discoveries. "We have developed a general system to track cell lineages at high resolution," Levy says. "And we have developed the theory to make sense of this type of data, in order to study evolution in a more quantitative way."

The finding is significant as the evolution of sizable cell populations is the basis of about 30% of deaths worldwide-some as a result of bacteria, parasites, fungi, and cancer.

"I have always been excited to learn about how evolution works, but disappointed by our lack of tools to study it quantitatively," Levy says. "This caused a big chasm between what theorists were capable of predicting and what biologists could actually measure. I saw this project as an opportunity to narrow that chasm, just a little bit."

The study, titled "Quantitative evolutionary dynamics using high-resolution lineage tracking," is published in the journal Nature.
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 30, 2020
Cell & Molecular Biology
Measuring Electrical Differences Inside of Live Cells
DEC 30, 2020
Measuring Electrical Differences Inside of Live Cells
Electricity is a key aspect of life, and is required for organisms to move and communicate. The movement of tiny charged ...
JAN 14, 2021
Genetics & Genomics
Identical Twins Aren't Exactly the Same
JAN 14, 2021
Identical Twins Aren't Exactly the Same
Identical, or monozygotic twins develop from one egg that splits into 2, so the embryos that develop independently from ...
JAN 18, 2021
Cell & Molecular Biology
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
JAN 18, 2021
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
Traumatic brain injury, which can happen after a blow to the head, has been called a silent epidemic and is the number o ...
JAN 21, 2021
Cell & Molecular Biology
A Practical Reason Why Cats Love Catnip
JAN 21, 2021
A Practical Reason Why Cats Love Catnip
Cats love catnip and silver vine; the cat-attracting plants are treats that make cats excited and happy. Big cats also f ...
JAN 29, 2021
Genetics & Genomics
As Humans Evolved, Cancer Came Along
JAN 29, 2021
As Humans Evolved, Cancer Came Along
Humans are far more likely to get several types of cancerous tumors than our closest evolutionary cousins, chimpanzees. ...
FEB 09, 2021
Cell & Molecular Biology
Brain Cells Called Astrocytes Linked to Depression
FEB 09, 2021
Brain Cells Called Astrocytes Linked to Depression
Depression is thought to affect at least 264 million people of all ages worldwide, and the available treatment options d ...
Loading Comments...