OCT 28, 2016 6:24 PM PDT

Research of Rare Genetic Disease Yields Insight Into Stem Cells

WRITTEN BY: Carmen Leitch
A new report from Shinya Yamanaka, who won a Nobel Prize for his work on stem cells, has been published in the Proceedings of the National Academy of Sciences. In the work, Yamanaka and colleagues have discovered a way to improve the efficiency of stem cell reprogramming.
 

 
The promise of stem cells met with many ethical challenges. Stem cells have the ability to become any type of cell in the body, but they are primarily in that state during the embryonic stage of development. But a breakthrough was achieved when Yamanaka figured out how to induce that non-specific, pluripotent state. However, the process is still very difficult. With the existing techniques, less than one percent of adult skin cells that are used to create induced pluripotent stem cells (iPSCs) are successfully reprogrammed. There is more information about iPSCs in the video above.
 
"Inefficiency in creating iPSCs is a major roadblock toward applying this technology to biomedicine," explained Yamanaka, a senior investigator at the Gladstone Institutes and director of the Center for iPSC Research and Application (CiRA) in Japan. "Our study identified a surprising way to increase the number of iPSCs that we can generate."
 
The investigators had originally aimed to make an experimental model for the study of a very rare genetic disease, fibrodysplasia ossificans progressiva (FOP). It causes ligaments, tendons, and muscles to turn into bone; as such it has the nickname "stone man syndrome." The disorder results from a mutation in the gene ACVR1, which causes the overactivation of a cellular signaling pathway involving the BMP protein and functioning in the development of the embryo.
 
The researchers were surprised to observe that creating iPSCs was easier when using cells taken from FOP patients compared to healthy individuals. The scientists suspected that it was because BMP can enhance cell replication, and helps them remain in a pluripotent state, one in which they can become any cell type. The hypothesis was tested through the manipulation of BMP signaling. Prevention of BMP signaling meant fewer iPSCs were made from the cells of FOP patients, while conversely, activation of the signaling pathway created more iPSCs.
 
"Originally, we wanted to establish a disease model for FOP that might help us understand how specific gene mutations affect bone formation," said first author of the report, Yohei Hayashi, PhD, a former postdoctoral scholar with Yamanaka. "We were surprised to learn that cells from patients with FOP reprogrammed much more efficiently than cells from healthy patients. We think this may be because the same pathway that causes bone cells to proliferate also helps stem cells to regenerate."
 
"This is is the first reported case showing that a naturally occurring genetic mutation improves the efficiency of iPSC generation," commented co-author Bruce Conklin, MD, a senior investigator at Gladstone. "Creating iPSCs from patient cells carrying genetic mutations is not only useful for disease modeling, but can also offer new insights into the reprogramming process."
 


A May 2016 interview with Shinya Yamanaka about his Nobel-winning work is shown in the video above. 
 
Sources: AAAS/Eurekalert! via Gladstone Institutes, PNAS
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 29, 2021
Microbiology
Cell Atlas Helps Explain the Deadly Nature of SARS-CoV-2
APR 29, 2021
Cell Atlas Helps Explain the Deadly Nature of SARS-CoV-2
For over a year now, scientists and clinicians have been trying to understand why the SARS-CoV-2 virus causes such deadl ...
MAY 09, 2021
Genetics & Genomics
Another Neurodevelopmental Disorder is Discovered
MAY 09, 2021
Another Neurodevelopmental Disorder is Discovered
Researchers are identifying more rare disorders because of advances in genetic sequencing technologies, which have made ...
MAY 10, 2021
Cell & Molecular Biology
Getting RNA-Based Medicine Past the Blood-Brain Barrier
MAY 10, 2021
Getting RNA-Based Medicine Past the Blood-Brain Barrier
RNA molecules serve several functions, one of which is to help the cell generate proteins from active genes. It also may ...
MAY 21, 2021
Space & Astronomy
Oxygen Conditions Needed for Emergence of Complex Life Discovered
MAY 21, 2021
Oxygen Conditions Needed for Emergence of Complex Life Discovered
For some time, scientists have supported the ‘Oxygen Control Hypothesis’. The theory states that higher leve ...
JUN 04, 2021
Clinical & Molecular DX
Tiny Bone Marrow Models Help Tailor Treatments for Platelet Disorder Patients
JUN 04, 2021
Tiny Bone Marrow Models Help Tailor Treatments for Platelet Disorder Patients
  Scientists have developed miniaturized 3-dimensional bone marrow models that could help physicians to predict whi ...
JUN 17, 2021
Immunology
How T Cells Sense Dangerous Invaders
JUN 17, 2021
How T Cells Sense Dangerous Invaders
T cells form a major part of our immune defenses, protecting us against the constant barrage of potentially pathogenic p ...
Loading Comments...