DEC 09, 2016 7:23 AM PST

Ancient Enzyme Morphed Shape to Carry Out New Functions in Humans


LA JOLLA, CA & JUPITER, FL – December 9, 2016 – New research led by scientists at The Scripps Research Institute (TSRI) reveals that a human enzyme has changed little from its days as a bacterial enzyme. In fact, the enzyme appears to be unique in its ability to change its shape—and its job in cells—without overhauling its basic architecture.

“This work illustrates nature’s efficiency—how it can take one thing and convert it to another, with a tweak here and a tweak there,” said Paul Schimmel, professor at TSRI and senior author of the new study.

The findings were published recently in the journal Proceedings of the National Academy of Sciences.
 

A Unique Enzyme


Schimmel and his colleagues focused on a member of a family of enzymes called aminoacyl tRNA synthetases. These enzymes originated in ancient bacteria, where they decode genetic information to help produce amino acids. Over time, the enzymes have evolved to carry out even more functions in complex lifeforms, such as humans.

“Aminoacyl tRNA synthetases are associated with—and we believe needed for—the building of organismal complexity, such as making tissues and organs in humans,” Schimmel explained.

These new functions are controlled by “decorations,” or additions to the aminoacyl tRNA synthetase architecture, which are generally lacking in bacteria; however, there is one aminoacyl tRNA synthetase, called AlaRS, that lacks any new decorations. AlaRS somehow carries out new roles in humans using a preexisting bacterial domain in its structure.

“AlaRS presented an exception to what we thought was a ‘rule,’ ” said Schimmel.
 

AlaRS’s Secret


The scientists in the new study took a closer look at AlaRS using two imaging techniques: X-ray crystallography and small-angle X-ray scattering. The images, combined with functional analysis, showed that a domain of AlaRS’s structure, called C-Ala, had been reshaped to take on a new role in humans. The end result is the same as if AlaRS had gained a new decoration.

Schimmel compared it to reshaping an airplane’s wing to serve as the airplane’s tail instead. “Nature has provided ways for reshaping objects, like C-Ala, and when that happens, new functions occur,” he said.

Schimmel said the next step is to figure out the function of human C-Ala. This work may shed light on diseases linked to mutations in aminoacyl tRNA synthetases, such as the neurodegenerative disease Charcot-Marie-Tooth.

In addition to Schimmel, authors of the study, “Two Crystal Structures Reveal Design for Repurposing the C-Ala Domain of Human AlaRS,” are Litao Sun (first author), Youngzee Song, David Blocquel and Xiang-Lei Yang of TSRI.

This work was supported by the National Cancer Institute (grant CA92577), the National Foundation for Cancer Research and the National Institutes of Health (grant R01 NS085092).

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
MAR 12, 2020
Cell & Molecular Biology
MAR 12, 2020
Zika Virus Used to Treat Advanced Tumors in Dogs
Researchers found a use for the zika virus; they treated advanced tumors of the central nervous system of three elderly ...
APR 09, 2020
Cell & Molecular Biology
APR 09, 2020
A Model of Spinal Development Provides Insight Into Disease
The spinal column develops from a row of structures called somites, which bud off sequentially in a process called somit ...
APR 11, 2020
Cardiology
APR 11, 2020
Cell Transplant Repairs Brain After Stroke
Using cell therapy, researchers from Lund University in Sweden have successfully restored mobility and a sense of touch ...
APR 26, 2020
Genetics & Genomics
APR 26, 2020
Does Poor Sleep Lead to Obesity, or is the Opposite True?
For many years, researchers have been aware of the link between obesity and poor sleep or a lack of sleep. But what come ...
MAY 22, 2020
Genetics & Genomics
MAY 22, 2020
ALK - The Skinny Gene?
Some people have to count calories and exercise regularly to be skinny while others can consume whatever they want and n ...
MAY 26, 2020
Immunology
MAY 26, 2020
The Hunt for Rare Immune Cells, to InfinityFlow and Beyond
The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopu ...
Loading Comments...