DEC 09, 2016 07:23 AM PST

Ancient Enzyme Morphed Shape to Carry Out New Functions in Humans


LA JOLLA, CA & JUPITER, FL – December 9, 2016 – New research led by scientists at The Scripps Research Institute (TSRI) reveals that a human enzyme has changed little from its days as a bacterial enzyme. In fact, the enzyme appears to be unique in its ability to change its shape—and its job in cells—without overhauling its basic architecture.

“This work illustrates nature’s efficiency—how it can take one thing and convert it to another, with a tweak here and a tweak there,” said Paul Schimmel, professor at TSRI and senior author of the new study.

The findings were published recently in the journal Proceedings of the National Academy of Sciences.
 

A Unique Enzyme


Schimmel and his colleagues focused on a member of a family of enzymes called aminoacyl tRNA synthetases. These enzymes originated in ancient bacteria, where they decode genetic information to help produce amino acids. Over time, the enzymes have evolved to carry out even more functions in complex lifeforms, such as humans.

“Aminoacyl tRNA synthetases are associated with—and we believe needed for—the building of organismal complexity, such as making tissues and organs in humans,” Schimmel explained.

These new functions are controlled by “decorations,” or additions to the aminoacyl tRNA synthetase architecture, which are generally lacking in bacteria; however, there is one aminoacyl tRNA synthetase, called AlaRS, that lacks any new decorations. AlaRS somehow carries out new roles in humans using a preexisting bacterial domain in its structure.

“AlaRS presented an exception to what we thought was a ‘rule,’ ” said Schimmel.
 

AlaRS’s Secret


The scientists in the new study took a closer look at AlaRS using two imaging techniques: X-ray crystallography and small-angle X-ray scattering. The images, combined with functional analysis, showed that a domain of AlaRS’s structure, called C-Ala, had been reshaped to take on a new role in humans. The end result is the same as if AlaRS had gained a new decoration.

Schimmel compared it to reshaping an airplane’s wing to serve as the airplane’s tail instead. “Nature has provided ways for reshaping objects, like C-Ala, and when that happens, new functions occur,” he said.

Schimmel said the next step is to figure out the function of human C-Ala. This work may shed light on diseases linked to mutations in aminoacyl tRNA synthetases, such as the neurodegenerative disease Charcot-Marie-Tooth.

In addition to Schimmel, authors of the study, “Two Crystal Structures Reveal Design for Repurposing the C-Ala Domain of Human AlaRS,” are Litao Sun (first author), Youngzee Song, David Blocquel and Xiang-Lei Yang of TSRI.

This work was supported by the National Cancer Institute (grant CA92577), the National Foundation for Cancer Research and the National Institutes of Health (grant R01 NS085092).

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
JUN 16, 2018
Clinical & Molecular DX
JUN 16, 2018
Nanoparticles Deliver "Theranostics" for Cancer Patients
New technology combing therapeutic agents and diagnostics (theranostics) can be used to deliver drugs to cancer cells. From the Moscow Institute of Physics
JUN 21, 2018
Cell & Molecular Biology
JUN 21, 2018
Are Patterns in Biology Governed by a Turing Theory?
Alan Turing didn't only contribute to computing & mathematics. He also developed a theory about how biological patterns form.
JUL 04, 2018
Videos
JUL 04, 2018
How Did Viruses Originate?
There is still a debate about whether or not viruses are a form of life, and we really don't know where they came from.
JUL 07, 2018
Microbiology
JUL 07, 2018
A New Target for an Effective Gonorrhea Treatment
Many pathogens are becoming antibiotic resistant; the microbe that causes the STD gonorrhea is no different.
JUL 27, 2018
Microbiology
JUL 27, 2018
Making Accurate Assessments of the Environmental Impact of Pollution
Without the right experimental design, behavioral testing can easily produce the wrong results.
JUL 28, 2018
Cell & Molecular Biology
JUL 28, 2018
Self-organizing Synthetic Tissues are Getting More Complex
All the structures in the body arise from a fertilized cell, and scientists are learning more about how that happens.
Loading Comments...