DEC 31, 2016 11:33 AM PST

Low Sperm Production may be Linked to low Cell Energy

WRITTEN BY: Carmen Leitch

New sperm have to be continuously made for successful human reproduction. Scientists sought to learn more about the mechanisms of that process, which could hold clues as to why fertility declines as men get older, and potentially to open up avenues for infertility treatments. Reporting in the journal Genes & Development, researchers at Kyoto University in Japan have learned more about how the Myc gene plays a role in the self-renewal of mouse spermatogonial stem cells (SSCs), which make sperm. The work is summarized in the short video below.

"So-called Myc genes play an important role in stem cells' ability to self-renew," explained the senior author of the new work, Takashi Shinohara, who added that SSCs have a special quality; they are "the only stem cells that transmit genetic information to offspring."

Increased expression of the Myc gene exerts an effect on self-renewal division. In this work, the researchers found that Myc regulates the self-renewal of mouse SSCs by controlling glycolysis, one way that a cell meets its energy needs.

The investigators suppressed the Myc gene in SSCs and injected them into mouse testes, and in control mice, injected normal SSCs. Looking at the number of SSCs two months later, there were far fewer abnormal SSCs than normal SSCs. When the researchers assayed the gene expression, it showed that in the abnormal mice, the ability to self-renew was disrupted, and potentially had an effect on the production of sperm in those mice.

"We found changes in the expression of genes that would slow the cell cycle," said Shinohara.

Myc-suppressed SSCs were able to self-renew, but did so at an abnormally slow rate. Following up on this finding, it was found that not only was the self-renewal rate slow, glycolysis was impaired. Their findings suggest that insufficient energy could be to blame for the slow self-renewal.

"A difference in glycolysis could explain natural differences in SSC self-renewal between mice," explained the first author of the study, Mito Kanatsu-Shinohara. "DBA/2 and B6 are two mouse types in which SSCs are know to self-renew at different rates." Looking at those two types of mice, the researchers found higher glycolysis levels in the cells of DBA/2 mice.

"These findings could have important implications for infertility research in the future," said Shinohara. "Stimulating the metabolism of SSCs could improve their proliferation. However, more careful study of the molecular pathways is necessary."

If you would like to know more about glycolysis, watch the video below from Khan Academy.

 

Sources: AAAS/Eurekalert! via Kyoto University News, Genes & Development

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 21, 2019
Genetics & Genomics
SEP 21, 2019
In a First, Sickle Cell Patient Receives CRISPR Gene Therapy
Many human diseases can be traced back to genetic mutations, and researchers are beginning to find ways to correct those errors....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Discovery of Bone Bits in Blood may Help Explain Vascular Calcification
As we age, calcium can build up in various tissues in the body, and cause them to harden in a process called calcification....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Scientists debunk evidence of a single "gay gene"
Study reveals that specific locations within the genome are associated with homosexual behavior, but not a particular "gay gene" as was popular belief....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
How Bones, not Adrenaline, Drive the Fight-or-Flight Response
Do we feel the fight-or-flight instinct in our bones?...
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Stem Cell Derived Natural Killer T Cells as Novel and Long-term Cancer Treatment
Hematopoietic stem cells are used to create a population of Natural Killer T-cells that could sustain and renew within the immune system, and attack cancer cells....
SEP 21, 2019
Neuroscience
SEP 21, 2019
Alzheimer's to be Diagnosed from Pupil Dilation
Researchers from the University of California have found a low-cost, non-invasive method to aid in diagnosing Alzheimer’s Disease (AD) before cogniti...
Loading Comments...