FEB 20, 2017 5:10 PM PST

Novel Protein Found, may aid Development of new Antibiotics

WRITTEN BY: Carmen Leitch

A new molecule has been found and it could help in the development of new antibiotics – a major priority for public health. Researchers reporting in Nature Microbiology describe a new protein called LoaP. This finding has given them some insight into how gene expression is controlled by proteins; while we know a lot about how the cell initiates the synthesis of a new protein, less is known about the termination of translation, and how the cell can get around sequence ‘roadblocks’ that halt synthesis.

"The upshot is that our discovery expands the basic knowledge of processive antitermination -- a type of genetic regulation -- and demonstrates that the mechanism is more widespread among bacteria than previously thought," explained Dr. Paul Straight, a Research Biochemist with Texas A&M AgriLife Research. "Antibiotic production by bacteria involves complex chemistry that is often encoded in a collection or 'cluster' of many genes. To express these giant gene clusters requires special regulation mechanisms. Understanding these mechanisms could help a great deal in the search for new antibiotics produced by bacteria." The video above illustrates antibiotic producting bacteria in action in the lab.

The investigators have not only found LoaP, or long operon associated protein, they have also learned a bit about its function. LoaP is often located adjacent to gene clusters that create antibiotics. As such, the scientists thought LoaP could offer some clues as to antibiotic production.

Straight noted that in bacteria, many genes are often strung together, and are then expressed as a whole when responding to cellular needs.

"These long chains of genes raise challenges for the molecular machines that decode DNA. Sometimes the molecular machines hit roadblocks, called terminators, and they stop and fall off the DNA. The LoaP protein is called a processive antiterminator, because it helps the machines stay on DNA and move through the roadblock terminators."

LoaP was found in the bacteria Bacillus amyloliquefaciens, which is known to repel pathogens that can attack plant roots in soil, aquaculture and hydroponic growth.

New antibiotics are becoming a major priority for people; we are faced with growing antibiotic resistance as well as emerging pathogens and must find a way to confront these threats before a serious public health crisis begins. One hurdle to new antibiotic development however, is that there is a lack of in-depth knowledge about the genetic mechanisms that underlie antibiotic synthesis. There is a huge resource of prospective new drugs in the myriad microbes that live among us; we just need to find the best way to realize their potential.

"After nearly a century of searching for bioactive natural products, bacteria still constitute a major target of modern drug discovery. The characterization of the biochemical pathways of these molecules remains a bottleneck to their development," Straight explained. “One of the key restrictions is a shortage of knowledge on the range of genetic mechanisms that can affect them. Therefore, the discovery of new classes of genetic regulatory mechanisms is likely to impact future development of natural products that counter disease."

In this work, Straight and his graduate assistant Chengxi Zhang of College Station worked in collaboration with University of Maryland researchers Jonathan R. Goodson, Steven Klupt and Dr. Wade Winkler.

If you would like to know more about gene regulation and gene clusters in bacteria, check out the following video.

 

Sources: AAAS/Eurekalert! via AgriLife Today, Nature Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 25, 2021
Microbiology
How Microbes Use Copper to Make an Antibiotic
NOV 25, 2021
How Microbes Use Copper to Make an Antibiotic
Copper is known to have antibacterial properties, and though it's an important chemical for many organisms, it can b ...
NOV 25, 2021
Cancer
Could an Anti-Cancer Drug Treat Diabetes?
NOV 25, 2021
Could an Anti-Cancer Drug Treat Diabetes?
Diabetes and cancer are two common diseases that share many similar risk factors. People with diabetes are also at& ...
NOV 26, 2021
Coronavirus
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
NOV 26, 2021
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
On Thursday, November 2021, South African health officials announced that they had identified a new variant of the pande ...
DEC 02, 2021
Microbiology
A 'Bispecific Antibody' to Fight Crimean-Congo Hemorrhagic Fever
DEC 02, 2021
A 'Bispecific Antibody' to Fight Crimean-Congo Hemorrhagic Fever
Crimean-Congo hemorrhagic fever (CCHF) is a deadly disease, which is fatal in about 30 percent of cases. It's caused ...
DEC 12, 2021
Cell & Molecular Biology
An Intricate Wiring Diagram of the Cells in a Mouse Brain
DEC 12, 2021
An Intricate Wiring Diagram of the Cells in a Mouse Brain
A detailed map of thousands of neurons in the mouse brain was created by a team of researchers, who worked on the projec ...
JAN 02, 2022
Genetics & Genomics
A Chemical Modification of tRNA Is Deciphered
JAN 02, 2022
A Chemical Modification of tRNA Is Deciphered
Transfer RNAs (tRNAs) perform a critical function in the creation of new proteins. As a messenger RNA molecules, which a ...
Loading Comments...