FEB 24, 2017 05:26 PM PST

Obesity Exerts an Epigenetic Effect on Muscle Stem Cells

WRITTEN BY: Carmen Leitch
2 27 1201

A modification to DNA called methylation has been connected to obesity. It is known that many changes are made to genes throughout life, called epigenetic modifications. Researchers began to learn a lot more about epigenetics in the past ten years; these chemical alterations have been found to affect DNA and RNA, and there are many different types of these modifications. The study of these changes has grown into an entire field, and they've has been linked to many fundamental physiological processes, such as specification of cell types, and disease states like cancer. This latest research has indicated that an epigenetic modification that adds methyl groups to genes, could contribute to a reduction in muscle mass, and metabolic disruptions like the ones seen in obese states.

The video above summarizes the work, which was published in BMC Medicine. The work was led by Cajsa Davegardh, a doctoral student at Lund University. The study looked at the different methylation characteristics of muscle stem cell DNA in obese and in healthy individuals.

"Many genes that had changed their genetic expression also changed their degree of methylation during the development to mature muscle cells, which indicates a connection," Davegardh revealed.

The investigators learned that a gene that aggravates inflammation, IL-32 has an important role in sensitivity to insulin and gene maturation in muscle cells that have matured completely. Disruption of insulin sensitivity is a common feature of obesity, and is a major risk factor for the development of diabetes. When the scientists manipulated the level of the gene, they saw an impact. "By reducing the gene expression, the muscle's insulin sensitivity was increased," said Davegardh.

Evaluating the differences in DNA methylation states in obese individual muscle stem cells compared to muscle stem cells of people with a weight in the normal range, the scientists found differences in the genes that were being regulated during the maturation of the cell. They also saw that alterations in methylation patterns were more frequent in the obese people when compared to non-obese people.

"We believe that in obese individuals the muscle stem cells have been reprogrammed, and that this may partly explain why muscle cells in obese people have decreased insulin sensitivity and lower metabolism after they have matured," Davegardh explained. "They may also have a protective function. Furthermore, we don't know what happens when you lose weight -- whether the methylations are restored. This would be interesting to follow up."

Many environmental influences seem to exert an epigenetic effect, like pollution, pesticides, heavy metals, radioactivity, viruses and bacteria, to name a few. There are a variety of different kinds of epigenetic modifications other than methylation such as acetylation, phosphorylation, sumolyation and ubiquitylation. Epigenetic mechanisms have been linked to a wide range of disorders  affecting many organ systems like the cardiovascular, respiratory, reproductive and immune systems, as well as neurobehavioral and cognitive diseases and practically every kind of cancer. As research in this area progresses, we are sure to learn a lot more. The video below features a talk on epigenetics from molecular biologist Nessa Carey, presented by The Royal Institution.

Sources: Science Daily via Lund University, Environmental Health Persepctives, BMC Medicine

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 12, 2018
Immunology
JUN 12, 2018
Auto-antibody Detection for Rheumatoid Arthritis Patients
No case of rheumatoid arthritis (RA), an autoimmune disease, is the same. Now, researchers want RA diagnostic approaches to match its pathological diversit
JUN 21, 2018
Videos
JUN 21, 2018
The World's First In Utero Stem Cell Transplant
Stem cells were harvested from a mother and successfully transplanted into her growing fetus.
JUL 04, 2018
Cell & Molecular Biology
JUL 04, 2018
How Factors Combine to Amplify the Risk of MS
Smoking and exposure to paints had a massive impact when combined with genetic risk factors.
JUL 09, 2018
Cell & Molecular Biology
JUL 09, 2018
Scientists Found a New Way to Treat Lung Cancer
Small cell lung cancer is an aggressive type that can be fatal; there were few treatments for the disease. That may have changed.
AUG 11, 2018
Videos
AUG 11, 2018
Hit The Sweet Spot - MIT's Image Awards
MIT researchers are trying to engineer a smarter insulin.
AUG 12, 2018
Cell & Molecular Biology
AUG 12, 2018
A Small Set of Cells Acts as a Timekeeper
Humans have adjusted to a daily rhythm, and our bodies rely on timing.
Loading Comments...