FEB 28, 2017 2:32 PM PST

New DNA Vaccine Helps Stimulate Natural Tumor Defenses

WRITTEN BY: Carmen Leitch

Scientists have been trying to use the body's natural defenses to fight successfully against cancer, a promising idea still in development. There has been limited success in this immunotherapeutic approach, but researchers have potentially made a breakthrough. Investigators working at The Wistar Institute and Inovio Pharmaceuticals, Inc. have engineered a DNA vaccine so the immune system will recognize a common cancer marker in a way that stimulates a major effect. Their results, which are summarized in the following video, were reported in the journal Molecular Therapy.

DNA vaccines are made up of a synthetic genetic sequence, one which instructs the immune system to mount a response against an antigen or marker. In this case, the antigen is one strongly associated with tumors. The relatively recent discovery of those antigens has inspired researchers to try using vaccines, obviously not a new tool in the biomedical repertoire but one that is not useful without the critical information about antigens. Already, this method has worked to clear neoplasia in people that have tumors because of a viral infection. 

There have been serious limitations to the vaccine approach that have been exposed as more are attempted. Those antigens that indicate tumors often only result in a mild immune response; even though they are unique to tumors, the body can also recognize that they are part of the host's body. So-called self-antigens are protected in order to prevent the immune system from attacking its own cells and harmless neighbors. The ability of the immune system to tolerate other cells that belong to the host thus dampen the efficacy of these vaccines. 

Wilm's tumor gene 1 (WT1) is one such antigen that is abundant in many types of cancerous tumors. Scientists speculate that it's likely to have an important part in tumor growth. However, vaccines that aim to target WT1 have not worked well; the immune system is not up to the fight.

To improve the body's fight against the WT1 antigen, Wistar scientists utilized an edited DNA sequence, one which makes the host target the WT1 antigen as a foreign invader. This technique, broke the immune tolerance of WT1 in animal models. 

"This is an important time in the development of anti-cancer immune therapy approaches. This team has developed an approach that may play an important role in generating improved immunity to WT1 expressing cancers," explained the senior author of the work, David B. Weiner, Ph.D., Executive Vice President and Director of the Vaccine Center at The Wistar Institute and the W.W. Smith Charitable Trust Professor in Cancer Research. "These immune responses represent a unique tool for potentially treating patients with multiple forms of cancer. Our vaccine also provides an opportunity to combine this approach with another immune therapy approach, checkpoint inhibitors, to maximize possible immune therapy impact on specific cancers."

This new vaccine with the optimized DNA sequence, one which tags WT1 for destruction but maintains enough similarity that only WT1 is targeted, has shown success in both mice and non-human primates. There did not appear to be any toxic effects on the test subjects. The vaccine did result in the establishment of immune memory against the antigen. In mice, the vaccine elicited an immune response to leukemia. Testing in human subjects will be another step on the road to clinical use.

Soures: AAAS/Eurekalert! via Wistar Institute, Molecular Therapy

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 23, 2020
Cell & Molecular Biology
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
SEP 23, 2020
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
In order to infect a cell, the SARS-CoV-2 virus has to find a way in. It can use receptors on the surface of cells that ...
SEP 11, 2020
Immunology
Study Reveals Tumor Defense Mechanism... And How to Beat It
SEP 11, 2020
Study Reveals Tumor Defense Mechanism... And How to Beat It
  P53 is an infamous process gene at the core of the development of tumors.  When P53  functional, it pau ...
OCT 22, 2020
Microbiology
SARS-CoV-2 Has Multiple Routes Into Cells
OCT 22, 2020
SARS-CoV-2 Has Multiple Routes Into Cells
Since the pandemic virus SARS-CoV-2 emerged on the scene late last year, it's left a trail of devastation around the glo ...
OCT 26, 2020
Cell & Molecular Biology
When Exposed to Estrogen, Fish Generate Fewer Males
OCT 26, 2020
When Exposed to Estrogen, Fish Generate Fewer Males
Life on earth relies on clean water, something that is becoming more scarce. Researchers have found that if water is con ...
NOV 13, 2020
Cell & Molecular Biology
Astrocytes are Star Players in the Brain
NOV 13, 2020
Astrocytes are Star Players in the Brain
As neurons fire, they enable us to think and move. They signal to one another where they meet at synapses, and at chemic ...
NOV 29, 2020
Cell & Molecular Biology
Engineering 'Smart' Cells to Kill Cancer
NOV 29, 2020
Engineering 'Smart' Cells to Kill Cancer
Cancer researchers have long been searching for a way to target cancer cells while ignoring healthy cells. A team of sci ...
Loading Comments...