APR 06, 2017 6:01 PM PDT

Microenvironment Study may Improve Tumor Research & Therapeutics

WRITTEN BY: Carmen Leitch

There are cancer treatments that work by disrupting the growth of blood vessels that support tumors; others aim to use the immune system as a way to attack the tumor itself. New work shows that these two systems, tumor blood networks and the immune system, affect one another. The Baylor College of Medicine researchers have suggested that cancer treatments should take this relationship into account, and that it may lead to an improvement in cancer therapeutics. Learn more about the work, which was reported in Nature, from the following video.

“One of the characteristics of successful cancerous tumors is their ability to trigger the formation of new blood vessels, a process called angiogenesis, to supply oxygen and nutrients to the growing cell mass,” said corresponding author of the report Dr. Xiang Zhang, an Associate Professor of Molecular and Cellular Biology at the Lester and Sue Smith Breast Center at Baylor. “Therapies that aim at blocking angiogenesis to starve the tumor can retard its growth; however, they can also have an undesired effect, tumor progression and resistance to treatments.”

Zhang and colleagues decided to study the microenvironment of the tumor to learn more. “We are trying to uncover a more complete picture of the tumor microenvironment,” said Zhang. “The tumor environment includes tumor cells and other types of cells that are recruited to the tumor mass and help the tumor grow. Scientists have divided those cells into subpopulations and studied them separately. We think that for a more complete understanding of the entire tumor microenvironment we have to study it with all its cell types together. Here, we applied this approach and discovered for the first time connections between tumor blood vessels and the immune system.”

Tumor blood vessels are abundant, but inefficient because they’re abnormal. A disrupted structure means functions are not performed well. That creates a harsh microenvironment for the tumor, which can actually trigger the escape of some cancer cells, and metastasis. These circumstances also exacerbate drug deliver and effectiveness. 

One new treatment avenue involves correcting the structure and function of the tumor’s blood vessels, called vessel normalization. It aims to prevent or reduce cancer metastasis and progression in addition to improving the effectiveness of treatments. There is little known about how the microenvironment affects vessel normalization. 

Through the analysis of the tumor microenvironment as a whole, Zhang’s team found that T lymphocytes, cells of the immune system, can promote vessel normalization. “The reciprocal regulation is also true,” Zhang said. “If we change the structure of the vasculature of the tumor toward vessel normalization, then we can also stimulate T cells to infiltrate the tumor. This bidirectional regulation between blood vessels and the immune system had not been elucidated before.”

“Both anti-blood vessel therapies and immunotherapies have been used in the clinic and have different degrees of success,” Zhang explained. “For instance, immunotherapy has been successful in some types of cancer such as melanoma and lung cancer, which are very aggressive cancers that did not have effective treatment until these therapies came along. However, there are still many patients who do not respond to this type of therapy. Similarly, from the anti-blood vessel therapy we know that many attempts have not been as successful as anticipated, and we have not been able to understand why.”

“Our finding suggests that anti-cancer therapies toward the blood vessels most likely influence the anti-tumor immune response, and vice-versa. Therefore, there is a possibility that by combining the therapies we can achieve better outcomes,” Zhang continued. He noted however, there is work to be done. 

 “However, we are still far from having practical clinical solutions. We hope that our work will provide some therapeutic theoretical basis for those researchers using the two different therapies to collaborate and look at each other’s biomarkers and therapeutic strategies,” he concluded.

 

Sources: Baylor College of Medicine, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 08, 2020
Cell & Molecular Biology
APR 08, 2020
Fruit Peel Molecule May Help Treat Multiple Sclerosis
Current MS treatments must be applied early on in the disease to be effective, and do not reverse the damage that's alre ...
APR 13, 2020
Microbiology
APR 13, 2020
Even Bacteria Align With the Daily Cycle of Day and Night
The majority of living organisms on Earth have adapted in some way to the daily cycle of night and day.
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
MAY 18, 2020
Cell & Molecular Biology
MAY 18, 2020
Just One Fatty Meal Can Impair Focus
Many tasty and convenient foods are high in fat, and new research has suggested that just one fatty meal may hinder our ...
MAY 16, 2020
Neuroscience
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
MAY 26, 2020
Immunology
MAY 26, 2020
The Hunt for Rare Immune Cells, to InfinityFlow and Beyond
The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopu ...
Loading Comments...