APR 18, 2017 5:36 PM PDT

Capturing the Transport of Cargo Into Cells

WRITTEN BY: Carmen Leitch

There are treatments for some viral infections and therapies for cancer, one group of such drugs is termed nucleoside analogs. While these drugs work, there is always room for improvement. New research has revealed the movement of a transporter getting these drugs into cells, which could improve drug development for serious illnesses. The work has been published in Nature, and the animation accompanying the work can be seen in the following video.

Nucleoside analogs work by interfering with the cellular machinery hijacked by cancer and viruses. They act like DNA building blocks and get incorporated into new genetic material, which is then compromised by these faulty parts.  Such drugs include AZT, a common HIV drug, 5-fluorouracil and gemcitabine, chemotherapy treatments, and acyclovir, a hepatitis B drug. 

The researchers found that one molecule is responsible for moving these nucleoside analogs and their normal counterparts into cells. That molecule, concentrative nucleoside transporter, or CNT, can be seen in the animation above slowly moving stuff like from one side of the cell and making periodic stops before reaching the other side of the cell membrane. 

"Our study is the first to provide a visualization of almost every possible conformation of this transporter in motion," said the senior author of the report, Seok-Yong Lee, Ph.D., an Associate Professor of Biochemistry at Duke University School of Medicine. "By understanding how this transporter recognizes and imports nucleosides, we may be able to redesign drugs that are better at getting inside specific cells like those harboring cancer or a virus."

The investigators used X-ray crystallography to understand more about how CNT transports nucleoside analogs and nucleotides - the bases of DNA that are required by cells for constructing genetic material (find out more about nucleoside and nucelotides from the video below). They thus obtained atomic level detail about the three-dimensional structure of the transporter protein, and did so as CNT changed shape while moving across the membrane. First the CNT captured a base on the cell surface, and after going through the motions, released it into the cell.

"We found that there is a region on the protein called the transport domain that acts like an elevator, shifting into different conformations as it transports cargo up and down across the membrane," said Lee. "Other studies had shown that many transporters move in this way, but ours is the first to record nearly all of the stages of the elevator model. This more detailed understanding could provide a platform to the future development of drugs that are more selective and efficient."

Lee noted that various transporters that import cargo like metabolites, ions, and neurotransmitters into the cell, have a mode of action that is similar to CNT. This new data could have not only aid in the development of treatments for viral infections and cancer; it may provide insight into other important physiological processes.

 

Sources: AAAS/Eurekalert! via Duke University, Nature

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 10, 2022
Cell & Molecular Biology
How STR Analysis Supports CAR-T Cell Manufacturing
OCT 10, 2022
How STR Analysis Supports CAR-T Cell Manufacturing
Engineered T cell therapies involve the genetic modification of a patient’s own immune cells with chimeric antigen ...
OCT 13, 2022
Cell & Molecular Biology
How the Tumor Microenvironment Can Disarm Immunity
OCT 13, 2022
How the Tumor Microenvironment Can Disarm Immunity
Cancer is basically what happens when cells start growing and dividing uncontrollably, and it gets worse when those canc ...
OCT 24, 2022
Neuroscience
Why is the Risk of Alzheimer's Higher in Women?
OCT 24, 2022
Why is the Risk of Alzheimer's Higher in Women?
Women tend to get Alzheimer's disease at a significantly higher rate than men; about two-thirds of people with the neuro ...
OCT 18, 2022
Clinical & Molecular DX
New Mitochondrial Disease Identified in Identical Twins
OCT 18, 2022
New Mitochondrial Disease Identified in Identical Twins
A new mitochondrial disease has been identified after a pair of identical twins were showing an unusual symptom. Despite ...
OCT 30, 2022
Neuroscience
Why Fear Memories Can Persist in the Brain
OCT 30, 2022
Why Fear Memories Can Persist in the Brain
People have to experience fear so they can learn to avoid dangerous situations. But some memories can be more persistent ...
NOV 09, 2022
Genetics & Genomics
Want to Study Copy Number Alterations in Cells? Bring MACHETE
NOV 09, 2022
Want to Study Copy Number Alterations in Cells? Bring MACHETE
Sure, MACHETE is a cool name, but the researchers that developed the technique are hoping people don't focus solely on t ...
Loading Comments...