JUN 08, 2017 05:37 PM PDT

Important Component of Sonic Hedgehog Pathway is ID'ed

WRITTEN BY: Carmen Leitch
2 4 403

Researchers have revealed new details about a cellular signaling cascade that has been under intense study in part because of its many links to human disease, published in Cell Reports. The cascade, a pathway called Sonic Hedgehog, has a role in developmental disorders as well as cancer. The investigators are hopeful that this new information could help the development of therapeutics for those diseases.

It has been known that a molecule called Smoothened moves into a cellular structure called a cilium (shown in the video) and is then able to activate the smoothened pathway. Most cells in the body have a primary cilium, which acts as a sort of antenna for the cell, picking up cues from the environment and helping the cell respond to them in a variety of ways. Cells are able to secrete things, take things up, or move around, for example.

Smoothened is prevented from entering the cilium under typical conditions, which keeps the pathway under control. For this work, the scientists wanted to know how smoothened was getting into the cilium. They found that an enzyme, Phospholipase A2 gets the process going. In addition, the enzyme seems to “supercharge” the signal from the Smoothened.

"We've basically revealed a new layer of regulation of Smoothened trafficking,"  said Stacey Ogden, Ph.D., an associate member of the St. Jude Department of Cell and Molecular Biology. "This is a very hot area of research now, because Smoothened trafficking appears to be a very crucial control point for signaling activity. So, if you can change Smoothened trafficking, you can very easily adjust the amplitude of Sonic Hedgehog signaling."

Ogden explained that these findings could have a clinical impact, since a reduction in the Sonic Hedgehog pathway activity is a common feature of ciliopathies, genetic disorders relating to primary cilia like Joubert syndrome, Bardet-Biedl syndrome and one of the most common genetic disease in the US, polycystic kidney disease. 

This image shows first author Angela Arensdorf, Ph.D., and corresponding author Stacey Ogden, Ph.D., an associate member of the St. Jude Department of Cell and Molecular Biology. / Credit: Peter Barta / St. Jude Children's Research Hospital

On the other side of dysfunction, over activation of the Sonic Hedgehog pathway causes around 30 percent of childhood medulloblastomas, the most common malignant brain tumor in children. Patients are in desperate need of better treatment options; they currently have to confront a host of terrible side effects and underwhelming efficacy.

"One of the drugs now being used to treat medulloblastoma is a Smoothened inhibitor," Ogden explained. "But tumor cells frequently become resistant to this drug and begin to grow again because of mutations in Smoothened that enable it to overcome the drug's inhibition. We want to determine whether drugs to inhibit Phospholipase A2 could reduce Sonic Hedgehog activity in cases where Smoothened becomes insensitive to targeted inhibition.”

Overactivation of the Hedgehog pathway in adults causes basal cell carcinoma, a very common cancer. Hedgehog pathway activation could be encouraging other types of tumors by influencing the tissue in around the tumor, the stroma, to create an environment that promotes growth, Ogden said.

"So Hedgehog pathway inhibitors may be useful in combination therapies with other traditional chemotherapies for other types of solid tumors," she said.

Ogden and her colleagues are continuing to investigate how Smoothened is regulated, and what drugs might affect its activity. Check out her lab in the video above.

Sources: AAAS/Eurekalert! via St. Jude Children’s Research Hospital, Cell Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 12, 2018
JUN 12, 2018
CD44 Insights & Cancer Influence
CD44 is a known cell surface protein involved in numerous interactions; it is overexpressed in cancerous tissue and its isoforms are being investigated as targets for cancer immunotherapy
JUL 06, 2018
Cell & Molecular Biology
JUL 06, 2018
Small Molecules Found to Dial Down Autoimmunity
Scientists have now identified two combinations of small molecules that tamp down a protein called STING.
JUL 12, 2018
Cell & Molecular Biology
JUL 12, 2018
New and Improved Ways to Create Stem Cells
New techniques that can make stem cells could have a big impact on therapeutics.
AUG 04, 2018
AUG 04, 2018
A Radical New Approach to Treating Neurodegeneration
The pathways that neural impulses travel can't be retrieved once they're lost... or can they?
AUG 09, 2018
Cell & Molecular Biology
AUG 09, 2018
Observing Development at the Cellular Level
A new method can track the formation and movement of lipids, DNA and proteins in live cells.
AUG 13, 2018
AUG 13, 2018
Insight Into the Origins of Junk DNA - From Koalas
The human genome isn't only genes. There's also long, repetitive sequences with an unknown function and origin.
Loading Comments...