AUG 02, 2017 05:11 PM PDT

Genetic Mutation in Human Embryo is Successfully Corrected

WRITTEN BY: Carmen Leitch

Researchers in the United States have made a breakthrough in gene editing by successfully repairing a deleterious genetic mutation in a human embryo that would otherwise cause a heart defect. This work, reported in Nature now paves the way for fixing disease-causing errors in genes before a person is born, and is sure to stimulate vigorous debates on the ethics of the technology. Learn more about the work, a collaborative effort by the Salk Institute, Oregon Health and Science University (OHSU) and the Institute for Basic Science in Korea, from the video.

"Thanks to advances in stem cell technologies and gene editing, we are finally starting to address disease-causing mutations that impact potentially millions of people," said the corresponding author of the work Juan Carlos Izpisua Belmonte, a Professor in Salk's Gene Expression Laboratory. "Gene editing is still in its infancy so even though this preliminary effort was found to be safe and effective, it is crucial that we continue to proceed with the utmost caution, paying the highest attention to ethical considerations."

Ethical precautions have been paramount when it comes to gene editing technologies in the United States. Belmonte has been a part of laying guidelines for the application of these tools to human embryos; he was one author of 2016’s "Human Genome Editing: Science, Ethics, and Governance" by the National Academies of Sciences, Engineering and Medicine. This work stuck to those recommendations, as well as adhering to guidelines made by the Institutional Review Board of OSHA and other committees established for scientific and ethical review.

This study aimed a known mutation in the MYBPC3 gene, which causes sudden death in young athletes that are otherwise healthy. The disorder is called hypertrophic cardiomyopathy (HCM), and while it is common, impacting around 1 in 500 people, it is not usually detected in time. Carriers can easily pass it to their children, so being able to correct this basic defect could save many lives not only by preventing a person from having a heart problem, but it will also stop it from being passed to the next generation.

For this work, a man with HCM donated skin cells, and by using standard methods, the researchers created pluripotent stem cells from them. CRISPR-Cas9 gene-editing technology was used as inspiration to repair the mutation: the Cas9 enzyme targeted the mutation, and the repair machinery in the cells corrected it naturally.

Crystal Structure of Cas9 bound to DNA based on the Anders et al 2014 Nature paper. Rendition was performed using UCSF's chimera software / Credit: Wikimedia Commons

After screening for the best results of their work, the gene-editing reagents were mixed with healthy human eggs and sperm donated by the HCM patient. The researchers found that their technique worked very well. Many embryonic cells are fixed and with a very low rate of off-target mutations or negative impacts on the genome.

"Even though the success rate in patient cells cultured in a dish was low, we saw that the gene correction seems to be very robust in embryos of which one copy of the MYBPC3 gene is mutated," said one of the first authors of the work Jun Wu, a Salk staff scientist.

When CRISPR-Cas9 had been applied to the mutated gene copy, it seemed that the embryo began repairs on its own. The embryo did not want to use synthetic DNA that was there and instead preferred utilizing the other copy of the gene - the healthy, normal one - to repair the mutated copy. "Our technology successfully repairs the disease-causing gene mutation by taking advantage of a DNA repair response unique to early embryos," said Wu.

The scientists emphasized that this tool is still in the early stages of development; much more evaluation remains to be done to understand what else may be occurring. It is also not yet known how this might work with other mutations.

"Our results demonstrate the great potential of embryonic gene editing, but we must continue to realistically assess the risks as well as the benefits," noted Izpisua Belmonte.

 

Sources: AAAS/Eurkealert! Via Salk Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 04, 2018
Videos
AUG 04, 2018
A Radical New Approach to Treating Neurodegeneration
The pathways that neural impulses travel can't be retrieved once they're lost... or can they?...
AUG 11, 2018
Videos
AUG 11, 2018
Hit The Sweet Spot - MIT's Image Awards
MIT researchers are trying to engineer a smarter insulin....
SEP 27, 2018
Genetics & Genomics
SEP 27, 2018
Learning What Causes Algae Blooms to Turn Toxic
According to the EPA, algal blooms threaten every state and in our changing climate, they may be more common....
OCT 01, 2018
Genetics & Genomics
OCT 01, 2018
Digging Into the Details of DNA Replication
Cells have to carry around a huge amount of genetic material, and usually that DNA is about 1000 times longer than the cell where it lives....
OCT 10, 2018
Genetics & Genomics
OCT 10, 2018
Using CRISPR in Utero to Treat Disease
Researchers have used a mouse model to show that it's possible to treat an illness before sickness occurs....
OCT 13, 2018
Genetics & Genomics
OCT 13, 2018
A Better Way to Analyze Epigenetic Tags
This improved technology does not harm the DNA under analysis....
Loading Comments...