SEP 07, 2017 6:00 PM PDT

Aberrant mRNA Processing may Underlie Schizophrenia

WRITTEN BY: Carmen Leitch

Schizophrenia affects around 200,000 people in the United States, and millions more worldwide; it can be a very serious disease. Little is known, however, about the mechanisms that underlie the disorder. New work reported in Molecular Neuropsychiatry has indicated that dysfunction in an important cellular complex called the spliceosome could be a cause of schizophrenia, which can result in delusions, hallucinations, and movement or thought disorders.

"Our study is the first to link the spliceosome with the disease," noted principal investigator of this work, Daniel Martins-de-Souza, a Professor in the Biology Institute of the University of Campinas (IB-UNICAMP), São Paulo State. mRNA splicing is outlined in the video.

Our cells translate genetic information into intermediary molecules called messenger RNA (mRNA), which are then translated into the many proteins that are critical to our physiology. mRNA undergoes processing after it’s made; a protein complex called the spliceosome acts to edit out non-coding portions of the mRNA transcript. The first author of the work and doctoral candidate Verônica Saia-Cereda, suggested that when there are malfunctions in the processing machinery, the resulting proteins are not properly made. That can lead to untold numbers of unknown consequences throughout an organism.

For this work, the researchers analyzed postmortem brain tissue of eight healthy people and twelve with schizophrenia. A high level of proteins with altered expression was detected in two parts of the brain that have been associated previously with schizophrenia, the anterior temporal lobe and corpus callous. 

"The anterior temporal lobe is involved in auditory and visual processing, so it's closely linked to symptoms such as psychosis and hallucinations. The corpus callosum is the brain region that contains the most glial cells," Martins-de-Souza explained.

Confocal microscope image of cultured human oligodendrocytes. The differential expression of hnRNPs may lead to dysfunction of oligodendrocytes, glial cells that produce myelin and are important for neuronal activity. / Credit: Daniel Martins-de-Souza, University of Campinas

119 differentially expressed proteins were found in the corpus callosum. Saia-Cereda revealed that the majority function in calcium-mediated cellular signaling. 224 differentially expressed proteins were found in the anterior temporal lobe. Some of the proteins with altered expression were nuclear proteins, and in the anterior temporal lobe, eight have roles in spliceosome function. That group includes heterogeneous nuclear ribonucleoprotein (hnRNP) proteins, and it has been established that hnRNP protein expression is aberrant in schizophrenics.

"Subsequent studies performed by other groups on the basis of our findings showed in animal and cellular models that alterations in hnRNPs do indeed interfere in the neuron myelination process and may impair cerebral connectivity,” said Martins-de-Souza. “Therefore, this may be the genesis of the myelination dysfunctions associated with schizophrenia,"

Investigators are also trying to identify proteins that associate with hnRNPs in mRNA processing, to see if they are also altered in schizophrenia patients. "The next step will be to try to modulate the expression of these molecules in the laboratory and observe how the spliceosome functions when some of them are inhibited," continued Martins-de-Souza. "The idea is to try to find the cause of this dysregulation of the spliceosome. Depending on the results, it's possible that some of these proteins can be tested as therapeutic targets."

Sources: AAAS/Eurekalert! Via São Paulo Research Foundation (FAPESP), National Institute of Mental Health, Molecular Psychiatry

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 02, 2021
Cell & Molecular Biology
Methylation Affects the 3D Structure of the Genome
JUN 02, 2021
Methylation Affects the 3D Structure of the Genome
Gene activity has to be carefully controlled by cells so that they maintain their identity and continue to carry out the ...
JUN 03, 2021
Microbiology
How HIV Can Deplete White Matter in the Brain
JUN 03, 2021
How HIV Can Deplete White Matter in the Brain
The brain is sometimes called grey matter, which is made up of neurons. But it also contains white matter, which are neu ...
JUL 05, 2021
Cell & Molecular Biology
A Step Toward Artificial Chromosomes - Manufacturing a Kinetochore
JUL 05, 2021
A Step Toward Artificial Chromosomes - Manufacturing a Kinetochore
In human cells, lengthy strands of DNA have to be carefully organized and compacted so they'll fit into the nucleus; our ...
JUL 13, 2021
Microbiology
Expanding Viral Populations May be More Adaptable Than We Knew
JUL 13, 2021
Expanding Viral Populations May be More Adaptable Than We Knew
In nature, growing populations from bacterial colonies to humans tend to expand. In pulled expansions, the individuals a ...
JUL 18, 2021
Microbiology
Alarming Rise in Antibiotic Resistance Among Bangladeshi Kids with Pneumonia
JUL 18, 2021
Alarming Rise in Antibiotic Resistance Among Bangladeshi Kids with Pneumonia
Antibiotic resistance is a growing threat to public health, and experts have been warning about it for so long, they've ...
JUL 20, 2021
Cell & Molecular Biology
Do Phages Drive Bacterial Evolution?
JUL 20, 2021
Do Phages Drive Bacterial Evolution?
Antibiotics are a standard treatment for bacterial infections, but more and more of these bacterial infections can't be ...
Loading Comments...