SEP 17, 2017 4:00 PM PDT

Nanoparticles in Tattoo Inks can Migrate in the Body

WRITTEN BY: Carmen Leitch
Researchers have found evidence that most tattoo inks contain tiny particles that can migrate away from the site of application to the lymph nodes. This new data is the first indication that inorganic and organic pigments and impurities, some of which are considered toxic, can travel around the body; it is also the first characterization of pigmented tissue. 
 

 

 
Because tattoos are considered completely cosmetic and voluntary procedures, there is not a reasonable scientific justification for using animal models to investigate the potential risks of tattoos thoroughly. It has been simply assumed that any tattoo that is applied with sterile equipment is a safe procedure. Learn more about the work, which was published in the journal Scientific Reports, from the video.
 
"When someone wants to get a tattoo, they are often very careful in choosing a parlor where they use sterile needles that haven't been used previously. No one checks the chemical composition of the colors, but our study shows that maybe they should," commented study author Hiram Castillo, a scientist at the European Synchrotron Radiation Facility (ESRF).
 
Tony Ciavarro tattoo flash piece done by Lo at Studio-B-Tattooing / Wikimedia Commons/ Inkedlo
 
Organic pigments are a common ingredient in many tattoo inks, which might also contain preservative chemicals, or dangerous heavy metal contaminants like cobalt, chromium, manganese or nickel. Carbon black is the most common tattoo ink ingredient, and titanium dioxide is the second most common. Because titanium dioxide is white, it’s often used to modify other colors to create new shades. While titanium dioxide is also typically used in many other products, like sunscreen, foods, and paints, it can delay tattoo healing and cause itching and skin elevation or irritation.
 
"We already knew that pigments from tattoos would travel to the lymph nodes because of visual evidence: the lymph nodes become tinted with the color of the tattoo," said Bernhard Hesse, a visiting scientist at ESRF.
 
"It is the response of the body to clean the site of entrance of the tattoo. What we didn't know is that they do it in a nano form, which implies that they may not have the same behavior as the particles at a micro level. And that is the problem: we don't know how nanoparticles react,” concluded Hesse.
 
Translocation of tattoo particles from skin to lymph nodes. Upon injection of tattoo inks, particles can be either passively transported via blood and lymph fluids or phagocytized by immune cells and subsequently deposited in regional lymph nodes. After healing, particles are present in the dermis and in the sinusoids of the draining lymph nodes. The picture was drawn by the authors /Credit: Shreiver et al Scientific Reports 2017
 
A graphic schematic from the work is shown above.
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 13, 2020
Cell & Molecular Biology
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
OCT 13, 2020
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
There is still a lot we don't know about the brain, and especially about two small bits of tissue deep within it called ...
OCT 19, 2020
Genetics & Genomics
Early Childhood Trauma Affects Metabolism in the Next Generation
OCT 19, 2020
Early Childhood Trauma Affects Metabolism in the Next Generation
Traumatic experiences can have a lasting impact, and kids that suffer through them can feel the effects for a lifetime. ...
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
OCT 07, 2020
Neuroscience
Biocompatible Gel Restores Sciatic Nerve Function in Rats
OCT 07, 2020
Biocompatible Gel Restores Sciatic Nerve Function in Rats
Video: Explains poly(lactic-co-glycolic acid), a hydrogel biopolymer that is a similar concept to the new hydrogel built ...
OCT 29, 2020
Genetics & Genomics
Severe Genomic Damage in Human Embryos Treated With CRISPR
OCT 29, 2020
Severe Genomic Damage in Human Embryos Treated With CRISPR
The CRISPR-Cas9 genomic editing system holds great promise for treating genetic errors that cause human disease. But we ...
NOV 11, 2020
Cell & Molecular Biology
Visualizing a Tumor Suppressor in Action
NOV 11, 2020
Visualizing a Tumor Suppressor in Action
Many types of cells in our bodies are short-lived and need to be replenished. Cell division has to be carefully controll ...
Loading Comments...