SEP 20, 2017 06:29 PM PDT

Researchers Find the Genetic Key to Butterfly Wings

WRITTEN BY: Carmen Leitch

By studying the genetics behind butterfly wing patterns, researchers have managed to learn how to control it. Reporting in the Proceedings of the National Academy of Sciences, investigators at the Smithsonian Tropical Research Institute in Panama discovered that a single gene could create the myriad types of butterfly wings that can be observed in nature. This work may help scientists understand how regulatory genes exert an effect on many genes, and how to increase the efficiency and efficacy of genetic manipulation.

"Butterfly wing patterns are amazing:" said report co-author Owen McMillan, staff scientist at STRI, "a true evolutionary novelty, highly diverse and strongly shaped by natural and sexual selection. By genetically engineering individuals from different species, we are quickly coming to grips with how this diversity is generated. Surprisingly, a single gene and one that is used repeatedly throughout development can have huge effects." 

The team knocked out the expression of the WntA gene, finding that it is in control of wing patterning. The gene encodes for a signaling molecule that maintains similarity among different species, exerting an influence on body development in insects. The molecule is a morphogen, or a diffusible signal that sets the position of special kinds of cells in tissues. 

"Imagine a paint-by-number image of a butterfly. The instructions for coloring the wing are written in the genetic code. By deleting some of the instructions, we can infer which part says 'paint the number two's red' or 'paint the number one's black," explained McMillan. “Of course, it is a lot more complicated than this because what is actually changing are networks of genes that have a cascading effect on pattern and color."

Carolina Concha, Biogenomics Post-doctoral Fellow at STRI, outlined their research. "Working in the Smithsonian's new lab in Gamboa, Panama, we injected butterfly eggs with an RNA probe that attached to part of the genetic code, a gene called WntA, which we suspected played a role in the expression of color.” 

“After knocking out the gene, we let the butterflies grow up and compared the wing patterns of the knockout mutants with the original wing patterns," noted Richard Wallbank a STRI and Cambridge postdoctoral fellow.

On the left, the normal or wild type (left) wing pattern of the passionfruit butterfly Heliconius eratus demophoon, on the right, the same butterfly after the WntA gene has been knocked out. / Credit: Smithsonian Tropical Research Institute

This procedure was then performed in seven different butterfly species; a comparison of the results revealed surprising ways the WntA gene could influence wing patterns.

"Going back to the paint-by-number analogy, 'Number one' can move around the wing in different butterfly species, and even in different color pattern variants of the same species. In Monarchs, for example, the gene is expressed with fine precision along the wing veins. In contrast, in Heliconius, a group known for vivid wing patterns, the gene is expressed in bold brush strokes from essentially the tip to the base of the wing. And it gets even crazier because the color of 'Number one' can change depending on context, shifting between different colored pigments and even changing how light is reflected. In butterflies, color is a function of both pigment and the structural properties of the scales cells that cover the wing," McMillan explained.

Scientists can now predict how many genes one regulatory gene might control based on how many potential binding regions are in the gene. By having regulatory genes, an organism can be spared the work of making a protein for every single job.

"The butterflies and moths, the Lepidoptera, are the third largest group of organisms known on the planet," said Martin, now Assistant Professor of Biology at George Washington University and corresponding author of the study. "Once we identified the sets of genes regulated by a gene like WntA, we can look at the sequence of different butterflies in the family tree to see when and where these changes took place during the 60 million years of butterfly evolution."

 

Sources: AAAS/Eurekalert! Via Smithsonian Tropical Research Institute, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 05, 2018
Neuroscience
NOV 05, 2018
How does Brain's GPS work?
Understanding the brain cells involved in decoding and encoding naviagtional information....
NOV 10, 2018
Videos
NOV 10, 2018
Engineering Viable Offspring From Same-sex Mouse Parents
Using a special kind of stem cell and genetic engineering, researchers have learned more about what's possible in reproduction....
NOV 15, 2018
Videos
NOV 15, 2018
Viewing the Interactions Between Cellular Structures
Scientists have used powerful microscopy techniques to learn more about how the dynamics of a live cell....
NOV 17, 2018
Genetics & Genomics
NOV 17, 2018
Joubert Syndrome Model Successfully Treated with Gene-editing
A life-threatening kidney disease may be one day be a treatable condition thanks to new work by researchers, and patients with the illness....
NOV 21, 2018
Cell & Molecular Biology
NOV 21, 2018
Preventing the Wrong Cells From Forming in Organoids
Organoids are advancing research by providing scientists with a 3D model of a human organ. But are they what they seem?...
DEC 04, 2018
Immunology
DEC 04, 2018
Shared Bacteria After Birth
A study reveals the benefits of natural birth over cesarean birth in regards to immune development...
Loading Comments...