JAN 24, 2018 04:30 PM PST

Using CRISPR to Create Stem Cells

WRITTEN BY: Carmen Leitch

Stem cells hold a tremendous amount of research promise. At one time, obtaining them seemed to be a nearly insurmountable challenge, until a process was invented by Gladstone Senior Investigator Shinya Yamanaka, MD, Ph.D. After exposing skin cells to four specific proteins, stem cells will form. Now, investigators at Gladstone have made stem cells from mouse skin cells using another powerful technique - CRISPR gene editing. This method may be a more straightforward tool for some of the many potential applications of stem cells. The findings have been reported in Cell Stem Cell.

A colony of embryonic stem cells / Credit:Wikimedia Commons/ Ryddragyn

"This is a new way to make induced pluripotent stem cells that is fundamentally different from how they've been created before," noted author Sheng Ding, Ph.D., a senior investigator at Gladstone. "At the beginning of the study, we didn't think this would work, but we wanted to at least try to answer the question: can you reprogram a cell just by unlocking a specific location of the genome? And the answer is yes."

Pluripotent stem cells have the ability to become almost any type of cell. As such, they hold a lot of potential uses in the clinic. Conditions like blindness, heart failure, and Parkinson's disease might be treated by these cells, which also have many applications in the laboratory. 

In the Nobel-prize winning finding, transcription factors, which regulate gene expression, turned skin cells into what was named induced pluripotent stem cells (iPSCs). In an update to that work, a chemical cocktail created the necessary changes. In the latest research, stem cells were made from skin cells by using CRISPR to induce changes in gene expression. 

"Having different options to make iPSCs will be useful when scientists encounter challenges or difficulties with one approach," said Ding, who is also a professor of pharmaceutical chemistry at the University of California, San Francisco. "Our approach could lead to a simpler method of creating iPSCs or could be used to directly reprogram skin cells into other cell types, such as heart cells or brain cells."

For this work, the researchers used CRISPR to target two genes, Sox2 and Oct4. Those genes are known to control the expression of genes related to stem cell development. Through gene editing targeting a single location, they were able to initiate a chain reaction that reprogramed the cells and turn them into iPSCs. This way may be much simpler than altering transcription factors, which can affect hundreds or thousands of genes. 

"The fact that modulating one site is sufficient is very surprising," Ding noted. "Now, we want to understand how this whole process spreads from a single location to the entire genome."

Learn more about the potential clinical applications of stem cells from the video above, featuring Yamanaka.


Sources: AAAS/Eurekalert! Via Gladstone Institutes, Cell Stem Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 02, 2018
Cell & Molecular Biology
NOV 02, 2018
Natural Molecule Enables Obese Mice to Shed Weight
A molecule that has been a focus of cancer research has been found to be a significant regulator of metabolism....
NOV 19, 2018
Neuroscience
NOV 19, 2018
Thalamus plays a role in cognitive flexibility
Cognitive flexibility is our brain's ability to shift from thinking about one thing to another. The higher your speed of moving gears, the greater your cognitive flexibility....
NOV 20, 2018
Cardiology
NOV 20, 2018
What Makes Some Fats Bad
You may recall hearing at some point that there are “good fats“ and “bad fats.“ What does that really mean? But what makes one type...
NOV 27, 2018
Cell & Molecular Biology
NOV 27, 2018
Why Screens can Interfere With Sleep
Most of us spend a lot of time looking at some type of screen, whether it's a laptop, a phone, or another device....
DEC 01, 2018
Videos
DEC 01, 2018
Identifying Disease-causing Gene Mutations
Genetic diseases can be traced back to an error in a gene. This video explores how the process works....
DEC 08, 2018
Cardiology
DEC 08, 2018
Adaptations Of The Heart To Chronic Exercise
We have all heard that exercise is good for us, particularly for the heart, but many don’t understand precisely how regular, long-term activity affec...
Loading Comments...