FEB 08, 2018 03:44 PM PST

New Molecule is a Potential Arthritis Therapeutic

WRITTEN BY: Carmen Leitch

There may come a time when people won’t require surgery to replace their joints. One researcher, Denis Evseenko, MD, Ph.D., a scientist at Keck School of Medicine at the University of Southern California, is pursuing that goal. His research team has been developing a therapeutic molecule they termed RCGD423, for Regulator of Cartilage Growth and Differentiation. It shows promise for treating arthritis. 

Osteoarthritis leads to the progressive loss of joint cartilage, shown in red. / Credit: Nancy Liu/Denis Evseenko Lab, USC

The researchers applied RCGD423 to joint cartilage cells in the lab and found the cells grew more, while less of them died. Next, the molecule was injected into a rat research model;  the damaged cartilage in those animals was able to heal more effectively.

RCGD423 acts through its communication with a specific chemical in the body, the glycoprotein 130 (Gp130) receptor. Two completely different kinds of signals are sent between these molecules; one stimulates the development of cartilage in the embryo, the other type of signal triggers chronic inflammation in adults. The RCGD423 molecule can amplify the ability of the Gp130 receptor to harness the signals that can stimulate the regeneration of cartilage in the embryo. RCGD423 can also stop inflammatory messages that can cause the breakdown of cartilage over time.

The positive results of their investigations have led the team to plan a clinical trial that will test RCGD423, or a molecule like it, as a treatment for either juvenile arthritis or osteoarthritis.

"The goal is to make an injectable therapy for an early to moderate level of arthritis," said Evseenko, associate professor of orthopedic surgery. "It's not going to cure arthritis, but it will delay the progression of arthritis to the damaging stages when patients need joint replacements, which account for a million surgeries a year in the U.S."

Evseenko suggested that RCGD423 could be a prototype for a new type of anti-inflammatory drug that has an extensive range of applications. Other work by this group produced several molecules that are similar to RCGD423 in structure but have varied potencies and physical effects. 

In a different study reported in Nature Cell Biology, RCGD423 activated stem cells and was able to stimulate hair growth. The scientists are now partnering with researchers at USC and other institutions to investigate the many possibilities these molecules present as therapeutics for lupus, rheumatoid arthritis, jaw arthritis, neurological and heart diseases and baldness. It may also have implications for the maintenance of pluripotent stem cells in the lab.

Learn more about the Evseenko’s research from the video.

Sources: AAAS/Eurekalert! Via University of Southern California, Annals of Rheumatic Diseases

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 03, 2018
Microbiology
NOV 03, 2018
Potential new Tuberculosis Treatment Found in Dirt
The pathogen that causes TB has been able to evolve, and often, the typical therapeutic for the illness does not work....
NOV 05, 2018
Neuroscience
NOV 05, 2018
How does Brain's GPS work?
Understanding the brain cells involved in decoding and encoding naviagtional information....
NOV 07, 2018
Cell & Molecular Biology
NOV 07, 2018
Lifespan Linked to Number of Cortical Neurons
Scientists linked the number of neurons in an organism's brain with the age of sexual maturity and lifespan of an organism....
NOV 08, 2018
Cell & Molecular Biology
NOV 08, 2018
Ancient Animal Provides a New Window Into Tissue Cohesion
Trichoplax adhaerens has no muscles, neurons, or defined shape but still makes coordinated movement....
NOV 16, 2018
Health & Medicine
NOV 16, 2018
Liver gets activated by just seeing and smelling food!
liver also gets activated by sight and the smell of food in anticipation of the prerequisite metabolic changes required for food intake....
NOV 21, 2018
Cell & Molecular Biology
NOV 21, 2018
Preventing the Wrong Cells From Forming in Organoids
Organoids are advancing research by providing scientists with a 3D model of a human organ. But are they what they seem?...
Loading Comments...