SEP 20, 2018 8:27 AM PDT

Defining the "Colors" of Antimatter

WRITTEN BY: Daniel Duan

Atoms of regular matters, such as hydrogen, can emit a distinct spectrum of lights when their electrons get excited and move between two different energy levels (officially known as "transitions"). Scientists have long asked the question: do the atoms of antimatters do the same?

In a study published in the journal Nature earlier this year, the ALPHA collaboration at the European Organization for Nuclear Research (CERN) confirmed the hypothesis, with their spectral measurments of incredible precision.

First, they made antihydrogen atoms by combining antiprotons and positrons (also known as antielectrons). Confined to the vacuum within a magnetic trap, antihydrogen were exposed to a beam of high-energy laser light. The atoms absorbed the energy, which resulted in electron transitions and the emission of a number of element-specific spectral series. The measured spectral profile was then compared with that of hydrogen atoms. 

Compared to those from their 2016 study, the latest results from ALPHA takes antihydrogen spectroscopy to the next level. Using multiple laser frequencies that enables the measurement of the spectral shape (spread in colours) of the 1S-2S transition of antihydrogen, CERN scientists got a measurement of antihydrogen frequency 100 times more precise than two years ago.

Source: CERN via Youtube

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 05, 2021
Space & Astronomy
Einstein Was Right, Again: X-rays Observed Behind a Black Hole for the First Time
AUG 05, 2021
Einstein Was Right, Again: X-rays Observed Behind a Black Hole for the First Time
  In an astrophysics first, a team of researchers have directly observed light coming from the backside o ...
AUG 19, 2021
Space & Astronomy
Researchers Observe the Birth of New Solar Systems
AUG 19, 2021
Researchers Observe the Birth of New Solar Systems
Astronomers are gaining new insights on how our solar system was born from observations of a nearby star-forming region ...
SEP 10, 2021
Space & Astronomy
NASA Announces December Launch Date for James Webb Space Telescope
SEP 10, 2021
NASA Announces December Launch Date for James Webb Space Telescope
Recently, NASA confirmed that the gamut of earth-based testing for the James Webb Space Telescope has been completed. Ju ...
SEP 24, 2021
Earth & The Environment
We've Killed Half the World's Coral
SEP 24, 2021
We've Killed Half the World's Coral
A recent study published in One Earth on Sep. 17 paints a poor picture for the state of the world’s coral reefs. L ...
OCT 03, 2021
Chemistry & Physics
How to Evaluate a Chemistry Tutor for Your Child
OCT 03, 2021
How to Evaluate a Chemistry Tutor for Your Child
Whether you’re an adult, teenager, or child the process of learning never stops and continually becomes more inter ...
OCT 06, 2021
Chemistry & Physics
2021's Nobel Prize in Physics Recognizes Foundational Work in Climate Science
OCT 06, 2021
2021's Nobel Prize in Physics Recognizes Foundational Work in Climate Science
The 2021 lineup for one of the world’s most prestigious awards has been announced, and the medal for physics has b ...
Loading Comments...