SEP 20, 2018 8:27 AM PDT

Defining the "Colors" of Antimatter

WRITTEN BY: Daniel Duan

Atoms of regular matters, such as hydrogen, can emit a distinct spectrum of lights when their electrons get excited and move between two different energy levels (officially known as "transitions"). Scientists have long asked the question: do the atoms of antimatters do the same?

In a study published in the journal Nature earlier this year, the ALPHA collaboration at the European Organization for Nuclear Research (CERN) confirmed the hypothesis, with their spectral measurments of incredible precision.

First, they made antihydrogen atoms by combining antiprotons and positrons (also known as antielectrons). Confined to the vacuum within a magnetic trap, antihydrogen were exposed to a beam of high-energy laser light. The atoms absorbed the energy, which resulted in electron transitions and the emission of a number of element-specific spectral series. The measured spectral profile was then compared with that of hydrogen atoms. 

Compared to those from their 2016 study, the latest results from ALPHA takes antihydrogen spectroscopy to the next level. Using multiple laser frequencies that enables the measurement of the spectral shape (spread in colours) of the 1S-2S transition of antihydrogen, CERN scientists got a measurement of antihydrogen frequency 100 times more precise than two years ago.

Source: CERN via Youtube

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAR 05, 2021
Chemistry & Physics
Half-auxeticity described in borophene-based material
MAR 05, 2021
Half-auxeticity described in borophene-based material
Auxetic materials are being of more and more interest to materials scientists and designers because of their ability to ...
APR 20, 2021
Chemistry & Physics
Warning: public restroom ahead, high levels of aerosol particles
APR 20, 2021
Warning: public restroom ahead, high levels of aerosol particles
New research on the aerosolization of pathogens provides recommendations for public restroom use. According to the study ...
MAY 18, 2021
Chemistry & Physics
What's all the fuss about diamonds, anyway?
MAY 18, 2021
What's all the fuss about diamonds, anyway?
You might only think of rings and bling when you think of diamonds, but in fact, there are a whole lot more uses for dia ...
MAY 23, 2021
Space & Astronomy
More Accurate Clocks Create More Disorder in the Universe
MAY 23, 2021
More Accurate Clocks Create More Disorder in the Universe
Physicists at the University of Oxford in the UK have conducted an experiment that suggests the more accurately clocks t ...
JUN 08, 2021
Space & Astronomy
Physicists Find Definitive Proof of What Causes the Northern Lights
JUN 08, 2021
Physicists Find Definitive Proof of What Causes the Northern Lights
The auroras that are the northern lights have captured the imagination of people for thousands of years. While theories ...
JUN 07, 2021
Chemistry & Physics
Are compostable batteries on the horizon?
JUN 07, 2021
Are compostable batteries on the horizon?
Biodegradable batteries represent the holy grail of our current technological obstacles to achieving the transition to a ...
Loading Comments...