NOV 29, 2018 6:00 AM PST

Nuclear Medicine: Origin, Crisis, and Renaissance

WRITTEN BY: Daniel Duan

SPECT images of a myocardial perfusion scan (WikiMedia)

60 years ago in the Brookhaven National Laboratory (BNL), the DOE's cutting-edge nuclear research facility located on Long Island, the invention of a new isotope production method gave birth to the field of nuclear medicine.

Developed by radiochemists Walt Tucker, Powell Richards, and Margaret Greene,  the seemingly ordinary column-shaped device, nicknamed the " moly cow", is capable of producing a highly useful medical isotope on demand.

First discovered in the 1930s, technetium is the lightest element whose isotopes are all radioactive. Technetium-99m (Tc-99m), first generated through particle bombardment of molybdenum, produces moderately-energic gamma photons as it decays, which was recognized for its potential in non-invasive medical imaging.

But the half-life of the isotope is just over 6 hours, marking an insurmountable problem for transportation and supply chain management. But the invention at the BNL revolutionized how Tc-99m is produced--by simply eluting the generator with an aqueous solution, one can extract Tc-99m from the generator, where its parent isotope Molybdenum-99 (Mo-99, which has a moderate half-life) decays and replenish Tc-99m till the end of its own shelf life.

Tc-99m generator (BNL)

This breakthrough allowed pharmacists to generate the medical isotope on demand inside healthcare facilities, making it much easier for doctors and patients around the world to access nuclear medicine. It was estimated that over 40 million nuclear imaging procedures are done every year using the isotope, allowing doctors to conduct life-saving diagnoses.

Due to the versatility of its chemical form, scientists have designed a variety of Tc-99m-based radiopharmaceuticals that can target specific parts of the human body, therefore enabling the diagnosis of different diseases.

For instance,  Tc-tetrofosmin and Tc-sestamibi are popular imaging tracers for myocardial perfusion; Tc-macroaggregated albumin is used in lung perfusion imaging and venography for detecting deep vein thrombi; Technetium phosphonate such as Tc-MDP and Tc-HDP are formulated for bone imaging. On top of chemicals, Tc-99m can also be used to label red blood cells for blood pool study.

Mid-20th century, the extensive use of Tc-99m rapidly expanded the production of its parent isotope Mo-99 to a handful of research reactors across the world, which sowed the seeds of the later shortage problem. As these reactors are getting close to the end of its intended lifespan and the attempt to bring replacement reactors online failed, the production of mo-99 was repeatedly interrupted due to extended periods of reactor maintenance in the late 2000s.  

Related reading: Reactor shutdown threatens world’s medical-isotope supply

Global shortages of Tc-99m prompted researchers to look into other production methods without the use of a fission nuclear reactor. Methods such as neutron capture, proton and X-ray bombardment, and even cyclotron production have been intensively researched. But the output capacity from these alternative processes is quite limited. Meanwhile, as funding start to pour into building low-enriched uranium-fueled reactors (also known as LEUs, a result of the non-proliferating measure adopted by the international nuclear community), many foresee a future where the need of Tc-99m could be entirely covered by these new reactors.  

Tc-99m was not the only star in nuclear medicine born out the Brookhaven National Laboratory. In 1976, fluorine-18 (F-18), a positron-emitting isotope was successfully incorporated into a glucose derivative, producing a metabolism tracking radiotracer known as F-18-fluorodeoxyglucose (FDG) that can be used in positron emission tomography (PET) scanning. These days, FDG is among the world’s most widely used radiotracers for cardiology, neurology, and oncology diagnosis, with more than 1.5 million 18FDG PET scans performed annually.

In the last decade, even though imaging modalities such as PET/CT, PET/MRI, and SPECT/CT are still the mainstay of nuclear medicine, the idea of a radiolabeled vehicle that's capable of diagnosis with therapy started to take off. The advent of theranostics transforms the field from "nuclear radiology" to true "nuclear medicine”.

Lutetium-177(Lu-177)-dotatate is a somatostatin analog peptide has been developed for the treatment of gastroenteropancreatic neuroendocrine tumors. Lu-177 not only delivers for precise and potent beta radiation therapy for carcinoid tumors but also emits gamma radiation that enables SPECT imaging for treatment monitoring.

Alpha particle emitting isotope actinium-225 has attracted a lot of attention due to its cytotoxic radiation. Several groups have been working on developing targeting cancer drug using this isotope. A novel optical imaging technique was also underway--the radionuclide's decay triggers  Cerenkov luminescence. Capturing the optical signals from the treatment site will allow oncologists to make accurate prognoses.

Under the synergetic efforts of radiochemists, pharmaceutical scientists and radiologists, the field of nuclear medicine continues to advance and evolve. One can expect in the not-too-distant future there will be more novel radiopharmaceuticals that can meet the unmet medical needs, provide life-saving diagnosis and treatment.

Radiopharmaceuticals - a key component of nuclear medicine (IAEA)

Source: Brookhaven National Laboratory

[This article contains Labroots original contents]

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
OCT 27, 2020
Chemistry & Physics
Why doping polycrystalline solar cells improves efficiency
OCT 27, 2020
Why doping polycrystalline solar cells improves efficiency
While there is certainly a fair amount of warranted pessimism about the future of our planet, there is also warranted op ...
NOV 06, 2020
Chemistry & Physics
The Most Powerful X-ray Source On Earth
NOV 06, 2020
The Most Powerful X-ray Source On Earth
Located inside the Sandia National Laboratories in Albuquerque, New Mexico, the Z Pulsed Power Facility (or Z Machine) i ...
DEC 24, 2020
Chemistry & Physics
Novel Two-phased Particles are the Ultimate Authenticity Tag
DEC 24, 2020
Novel Two-phased Particles are the Ultimate Authenticity Tag
Counterfeit goods producers are flooding the global market with low-quality, sometimes dangerous merchandise and ripping ...
DEC 27, 2020
Chemistry & Physics
The Coolest Molecules of 2020
DEC 27, 2020
The Coolest Molecules of 2020
2020 was a chaotic, stressful year for most, but it did not stop innovative ideas and creative scientific thinking from ...
JAN 10, 2021
Chemistry & Physics
Documenting biological magnetoreception in living cells
JAN 10, 2021
Documenting biological magnetoreception in living cells
New research published recently in the Proceedings of the National Academy of Sciences from a team of scientists fr ...
JAN 20, 2021
Chemistry & Physics
Check out this anode-free, zinc-based battery
JAN 20, 2021
Check out this anode-free, zinc-based battery
It is at once imperative and urgent to develop batteries capable of storing large amounts of energy if we are to success ...
Loading Comments...