SEP 08, 2020 7:38 PM PDT

Green supercapacitor charges faster than you can imagine

Research published in the journal Energy Storage reports on the development of a supercapacitor that is literally plant-based. Made from lignin, which enhances the electrochemical properties of electrodes, the supercapacitor designed by scientists at Texas A&M University is flexible, lightweight, cost-effective – and most importantly, fast. According to the researchers, the supercapacitor has enough energy storage that could even charge electric cars within a few minutes in the near future.

Photo: Pixabay

"Integrating biomaterials into energy storage devices has been tricky because it is difficult to control their resulting electrical properties, which then gravely affects the devices' life cycle and performance. Also, the process of making biomaterials generally includes chemical treatments that are hazardous," said Dr. Hong Liang, a professor in the Department of Mechanical Engineering. "We have designed an environmentally friendly energy storage device that has superior electrical performance and can be manufactured easily, safely, and at a much lower cost."

Supercapacitors are unique from batteries in their ability to generate a large quantity of electric current within a short duration. This means that supercapacitors can charge devices much faster than batteries.

Dr. Liang and her team used manganese dioxide nanoparticles to design one of the two supercapacitor electrodes. Supercapacitor electrodes, unlike basic capacitors, can be constructed with a variety of materials.

"Manganese dioxide is cheaper, available in abundance and is safer compared to other transition metal oxides, like ruthenium or zinc oxide, that are popularly used for making electrodes," said Dr. Liang. "But a major drawback of manganese dioxide is that it suffers from lower electrical conductivity."

That’s why Liang’s team brought in lignin polymers. Using a purified lignin with a commonly available disinfectant known as potassium permanganate, the team was able to construct an electrode for their capacitor. As explained by Eureka Alert, the researchers “…applied high heat and pressure to initiate an oxidation reaction that results in the breaking down of potassium permanganate and the deposition of manganese dioxide on lignin. Next, they coated the lignin and manganese dioxide mixture on an aluminum plate to form the green electrode. Finally, the researchers assembled the supercapacitor by sandwiching a gel electrolyte between the lignin-manganese dioxide-aluminum electrode and another electrode made of aluminum and activated charcoal.”

This process resulted in a supercapacitor with superior electrochemical performance, with a specific capacitance up to 900 times greater than that of supercapacitors. Additionally, the supercapacitor’s ability to store an electrical charge did not suffer even after thousands of cycles of charging and discharging.

"In this study, we have been able to make a plant-based supercapacitor with excellent electrochemical performance using a low-cost, sustainable method," concluded Liang. "In the near future, we'd like to make our supercapacitors 100% environmentally friendly by incorporating only green, sustainable ingredients."

Sources: Energy Storage, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 29, 2021
Chemistry & Physics
Neuston: The Understudied Secret of the Ocean's Surface
JUL 29, 2021
Neuston: The Understudied Secret of the Ocean's Surface
Sitting just below our ocean’s surface is a host of often overlooked organisms; ones who help connect our world&rs ...
AUG 09, 2021
Space & Astronomy
Moon's Magnetism Comes from Impacting Comets, not Magnetic Shield
AUG 09, 2021
Moon's Magnetism Comes from Impacting Comets, not Magnetic Shield
Magnetization on the moon may come from impact events from objects like meteors instead of the presence of a magnetic sh ...
AUG 19, 2021
Space & Astronomy
Researchers Observe the Birth of New Solar Systems
AUG 19, 2021
Researchers Observe the Birth of New Solar Systems
Astronomers are gaining new insights on how our solar system was born from observations of a nearby star-forming region ...
SEP 01, 2021
Chemistry & Physics
New Study Suggests One-third of Binary Stars Have Engulfed Their Planets
SEP 01, 2021
New Study Suggests One-third of Binary Stars Have Engulfed Their Planets
While our solar system is relatively calm and inert, some sun-like stars out there will literally eat the planets in the ...
SEP 22, 2021
Chemistry & Physics
XENON1T Physicists May Have Directly Detected Dark Energy
SEP 22, 2021
XENON1T Physicists May Have Directly Detected Dark Energy
In what could be a revolutionary discovery, a team of physicists from the XENON Collaboration may have detected dark ene ...
OCT 14, 2021
Cell & Molecular Biology
Cutting Edge Tools Change Our View of the Nuclear Pore Complex
OCT 14, 2021
Cutting Edge Tools Change Our View of the Nuclear Pore Complex
There are many intricate molecular machines that perform essential functions, and this work has called a method used to ...
Loading Comments...