SEP 18, 2020 7:51 AM PDT

Molecule take images of itself with its own electrons

A new study published in Physical Review Letters highlights the development of an approach to observe time-dependent changes in molecular structures. The method uses diffraction to encode the internuclear spaces between atoms in a molecule, essentially allowing the molecule to produce self-images uses its own electrons.

Led by Dr. Arnaud Rouzée, the team of researchers from the Max Born Institute (MBI) conducted a series of experiments on laser-assisted electron re-collisions resulting from strong-field ionization of photoexcited I2 molecules. Usually what happens after strong-field ionization is that free electrons accelerate away from the molecule under the influence of the laser electric field.

Yet, in their experiments, the researchers found that the oscillating nature of the field caused some of the electrons to boomerang back to their parent ion. This process is referred to as a re-collision, during which an electron can either be reabsorbed in the molecule or scatter off the ion.

“By comparing differential scattering cross-sections extracted from the angle-resolved photoelectron spectra to differential scattering cross sections from quantum-scattering calculations, we demonstrate that the electron-scattering dynamics is dominated by a shape resonance,” write the authors. “When the molecular bond stretches during the evolution of a vibrational wave packet this shape resonance shifts to lower energies, both in experiment and theory.”

As the researchers demonstrate, shape resonances can be utilized to produce high-resolution movies of molecular dynamics in order to document and follow nuclear rearrangement at high speeds in real-time.

Photo: Pixabay

The MBI team showed this technique by recording a movie of the ultrafast vibrational dynamics of photo-excited I2 molecules. As Science Daily reports:

“A first laser pulse, with a wavelength in the visible part of the wavelength spectrum, was used to prepare a vibrational wavepacket in the electronic B-state of the molecule. This laser pulse was followed by a second, very intense, time-delayed laser pulse, with a wavelength in the infrared part of the wavelength spectrum. Electron momentum distributions following strong-field ionization by the second laser pulse were recorded at various time delays between the two pulses, corresponding to different bond distances between the two iodine atoms.”

The researchers say that their investigation provides the framework for future experiments in photo-induced molecular dynamics with high temporal and spatial resolution.

Sources: Physical Review Letters, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 11, 2020
Chemistry & Physics
"Surfer waves" documented in the upper atmosphere
AUG 11, 2020
"Surfer waves" documented in the upper atmosphere
Clemson University researcher Rafael Mesquita has collaborated with his peers to document what he is calling atmospheric ...
AUG 21, 2020
Chemistry & Physics
Biorubber glue reduces surgery time and improves pain relief
AUG 21, 2020
Biorubber glue reduces surgery time and improves pain relief
A study published recently in Biomaterials showcases a new development in biomaterials that could forever change th ...
AUG 22, 2020
Cell & Molecular Biology
A New Way to Describe Enzyme Kinetics
AUG 22, 2020
A New Way to Describe Enzyme Kinetics
The  Michaelis-Menten equation is classic, but it may not be sufficient to describe all enzymatic reactions, new wo ...
SEP 03, 2020
Chemistry & Physics
Designing the most effective - and comfortable- face mask yet
SEP 03, 2020
Designing the most effective - and comfortable- face mask yet
Engineers from Georgia Institute of Technology have designed a facemask that is comfortable, safe, and – best of a ...
SEP 08, 2020
Chemistry & Physics
Green supercapacitor charges faster than you can imagine
SEP 08, 2020
Green supercapacitor charges faster than you can imagine
Research published in the journal Energy Storage reports on the development of a supercapacitor that is literally p ...
SEP 22, 2020
Chemistry & Physics
New photodectector can see the full light spectrum
SEP 22, 2020
New photodectector can see the full light spectrum
New research from a team at RMIT University highlights the development of a hyper-efficient broadband photodetector that ...
Loading Comments...