MAR 23, 2016 8:30 AM PDT

To make hydrogen, start with ‘strange' chemistry

Bacteria have been making hydrogen for billions of years, and now scientists are using radical chemistry in an effort to make hydrogen, too.

In a study published in the journal Science, chemists describe a key step in assembling a hydrogen-generating catalyst.
 
Making hydrogen easily and cheaply is a dream goal for clean, sustainable energy. A group of chemists recently described a key step in the process-perhaps opening ways to imitate them.

“It’s pretty interesting that bacteria can do this,” says David Britt, professor of chemistry at University of California, Davis, and co-author on the paper. “We want to know how nature builds these catalysts—from a chemist’s perspective, these are really strange things.”

The bacterial catalysts are based on precisely organized clusters of iron and sulfur atoms, with side groups of cyanide and carbon monoxide. Those molecules are highly toxic unless properly controlled, Britt notes.

The cyanide and carbon monoxide groups were known to come from the amino acid tyrosine, Britt says.
Jon Kuchenreuther, a postdoctoral researcher in Britt’s laboratory, used a technique called electron paramagnetic resonance to study the structure of the intermediate steps.

They found a series of chemical reactions involving a type of highly reactive enzyme called a radical SAM enzyme. The tyrosine is attached to a cluster of four iron atoms and four sulfur atoms, then cut loose leaving the cyanide and carbon monoxide groups behind.

“People think of radicals as dangerous, but this enzyme directs the radical chemistry, along with the production of normally poisonous CO and CN, along safe and productive pathways,” Britt says.

Kuchenreuther, Britt, and colleagues also used another technique—Fourier Transform Infrared—to study how the iron-cyanide-carbon monoxide complex is formed. That work will be published separately.

“Together, these results show how to make this interesting two-cluster enzyme,” Britt says. “This is unique, new chemistry.”

James Swartz, professor of chemical engineering and bioengineering at Stanford University, contribute to the work, which was supported by grants from the US Department of Energy.

Source: UC Davis

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 05, 2020
Chemistry & Physics
No, Gravity Doesn't Affect How Bubbles Collapse
NOV 05, 2020
No, Gravity Doesn't Affect How Bubbles Collapse
The ubiquitous presence of bubbles makes them a common phenomenon, but interestingly our understanding of this globular ...
DEC 04, 2020
Chemistry & Physics
Fusions in Action: Scientists Confirm a Different Way the Sun Produces Energy
DEC 04, 2020
Fusions in Action: Scientists Confirm a Different Way the Sun Produces Energy
Since its formation, the Sun has been the main power source for all objects within its irradiation range, putting out 3. ...
DEC 15, 2020
Chemistry & Physics
Over-the-air Charging - How Close Are We to Realize Tesla's Vision?
DEC 15, 2020
Over-the-air Charging - How Close Are We to Realize Tesla's Vision?
When inventor and visionary Nikola Tesla erected his Wardenclyffe Tower, a 186-feet tall and 68-feet wide monstrous towe ...
DEC 22, 2020
Chemistry & Physics
Improving transmission electron microscopy at nanoscale
DEC 22, 2020
Improving transmission electron microscopy at nanoscale
New research published in the journal Matter describes the development of a new kind of microscopy – this time at ...
DEC 24, 2020
Chemistry & Physics
Sorbent made from MOF grown on PET absorbs common insecticide
DEC 24, 2020
Sorbent made from MOF grown on PET absorbs common insecticide
A new study published recently in Applied Materials Today details an innovative method of absorbing insecticid ...
JAN 17, 2021
Chemistry & Physics
Cleaning up microfibers at the source with electrolytic oxidation
JAN 17, 2021
Cleaning up microfibers at the source with electrolytic oxidation
A new method of eradicating microplastics in wastewater has been described in a study published recently in the Env ...
Loading Comments...