APR 12, 2016 02:30 PM PDT

Fastballs get power from the pitcher's waist

How do people, not just professional baseball players, throw stuff a such high speeds?
 
"The goal of throwing is to transmit that power, from the waist, out to your hand," says Madhusudhan Venkadesan. "We do that by storing and releasing elastic energy in the shoulder. That is what we think is happening."

Humans in general are the throwing aces of the animal kingdom. Chimpanzees, on the other hand, can throw but no better than a small child.

When we throw an object, our arm undergoes angular velocities of more than 9,000 degrees per second—that’s the fastest movement in the human body.

Madhusudhan Venkadesan, professor of mechanical engineering and materials science at Yale University, has studied images of baseball players captured with 3D cameras and built devices in his lab to replicate throwing motions.

Calculations show it can’t be the upper-body muscles alone that produce that kind of power.

“What happens is that the power is generated down by your hip and waist, where we have huge muscles,” he says.

That the waist can rotate is crucial to throwing, since it allows the body to store elastic energy, which occurs when objects are stretched or compressed. “The goal of throwing is to transmit that power, from the waist, out to your hand. We do that by storing and releasing elastic energy in the shoulder. That is what we think is happening.”

Another big part of our throwing ability comes from what’s known as the glenoid joint, the collarbone-and-socket combination in the shoulder. This joint points upward in chimps, which makes it look like they’re always shrugging their shoulders. In humans, it’s lateral, which allows us to turn the arm into a huge lever powered by the elastic energy stored in the tendons and ligaments across the chest and shoulder muscles—like giant rubber bands.

The last component of this system is the twisted geometry of the humerus, the bone that runs from shoulder to elbow. The twist in the bone allows throwers to rotate the arm far back to increase the stored elastic energy.

These three factors—the mobile waist, the sideways glenoid joint, and the twist in the humerus—first appear together in the fossil record about 1.8 million years ago in homo erectus. That’s just around the time when there’s strong evidence of hunting. The throwing-hunting connection makes sense. Humans, who specialize in long-distance running could chase down large animals until they were exhausted. But then what?

“You really don’t want to be within an arm’s reach of the animal,” Venkadesan says, adding that just one kick from the animal would bring an abrupt end to the hunt. “What you want to do is fling a rock or something hard really fast to kill the animal.”

While the research answers a lot of questions about throwing, there are still more that need to be addressed, Venkadesan says. For instance, how do we throw so accurately at high speeds? And why do we throw overhanded?

“Of all the possible ways someone could throw, why is this the best way?”

Source: Yale University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 22, 2018
Chemistry & Physics
NOV 22, 2018
Why Are Dandelion Seeds So Good at "Flying"?
The seeds of dandelions, pesky and irritating as they are, bear an extraordinary aerodynamic property that allows them to be carried far by the wind. In co...
NOV 27, 2018
Chemistry & Physics
NOV 27, 2018
Unraveling the Secret Behind the Strength of Spider Web
You don't need to watch a Spider-Man movie to notice how tough a spider web can be. Made of fiber-based spider silk, the seemingly fragile structure ca...
DEC 20, 2018
Chemistry & Physics
DEC 20, 2018
Bacteria-Powered Superfluids
Viscosity is the property of a fluid. It is the measure of its resistance to transformative stress, in a simpler explanation, the friction between its mole...
DEC 30, 2018
Space & Astronomy
DEC 30, 2018
Are Some Super-Earth Exoplanets Rich in Rubies and Sapphires?
Astronomers are always peeking through the lenses of their fancy space telescopes to learn more about the universe around us. One thing that captivates the...
FEB 04, 2019
Cell & Molecular Biology
FEB 04, 2019
Insight Into the Earliest Stages of Life on Earth
Scientists have been looking for the origins of life on earth for many years. One theory that has emerged involves a biological molecule called RNA....
FEB 15, 2019
Chemistry & Physics
FEB 15, 2019
Future Circular Collider and the Future of Physics
Is bigger always better? Well, that depends. This January, a consortium of research institutes revealed to the public for the first time the design of a bi...
Loading Comments...