DEC 22, 2016 01:22 PM PST

Using Bacteria to Reduce Carbon Dioxide Emissions

The bacteria Clostridium thermocellum is an attractive candidate for potential use in biofuel production due to its cellulolytic abilities. This capability to digest plant material into biofuels and chemicals without the separate addition of other enzymes could increase ease and efficiency of the reactions. However, the mechanism by which the bacteria are able to metabolize cellulose and consume carbon dioxide, or CO2, has not been discovered. By consuming the standard CO2 byproduct from the initial reaction, the bacteria open up an entirely new route of greener biofuel production and potential reduction of greenhouse gasses.

Lisa Warner, an assistant research professor in the Biomolecular Research Center at Boise State University and colleagues affiliated with the U.S. Department of Energy’s National Renewable Energy Laboratory were able to identify the uncharacterized metabolic pathway used by these bacteria. While scientists have known that some bacteria are capable of CO2 uptake, they have not been able to figure out how. This study enables researchers to increase understanding of this process and make use of the newly identified enzymes involved in the process to develop production procedures that result in a decrease in toxic emissions.

Chemical reaction of carbon dioxide reduction into formate (Wang and Himeda, 2012)

“Now that we’ve shown we have a novel pathway we can take advantage of the enzymes that convert CO2 to something else and create a cocktail of molecules with the least amount of noxious byproducts,” Warner said.

Clostridium thermocellum is one of the most efficient converters of plant material into hydrogen and hydrocarbon biofuels. CO2 is a standard byproduct of the reaction, causing concern about contributing to the already high CO2 levels in the atmosphere. The researchers discovered that these bacteria, however, are able to reclaim some of the CO2 byproduct and convert that into formate, or HCO2, under certain conditions.

The obstacle is that formate and CO2 look almost identical in analysis with a mass spectrometer, so discriminating between the two within the pathway has proven difficult. Warner and her collaborators were able to distinguish the two molecules using nuclear magnetic resonance spectroscopy.

Since Clostridium thermocellum normally lacks the ability to convert CO2 into formate, the team surmised that addition of 13C-bicarbonate used to promote bacterial growth through additional carbon metabolism might stimulate CO2 conversion. When the bacteria were fed 13C-bicarbonate, a dissolved form of CO2, a novel pathway was initiated that was capable of catalyzing the reduction of CO2 to formate. Combining genomic and experimental data, the team demonstrated that the conversion of CO2 to formate can serve as CO2 fixation in a biofuel production reaction and channels the CO2 into a unique carbon metabolic pathway that internalizes CO2 via two biochemical reactions.

The use of carbon isotopes allowed the group to track CO2 upon uptake and determine how it incorporates into new products. The findings highlight the metabolic versatility of Clostridium thermocellum and the capability to not only play a primary role in biofuel production but also in CO2 fixation as well. The study was published in the journal Proceedings of the National Academy of Sciences of the United States of America.

 

Sources: Biomass Magazine, PNAS, Microbiology Online

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
NOV 18, 2018
Space & Astronomy
NOV 18, 2018
All About NASA's Plan to Drill Deeper Into Mars Than Ever Before
When NASA’s InSight lander arrives at Mars, it will land near the planet’s equator at Elysium Planitia. This location is flat, which is ideal f...
NOV 25, 2018
Earth & The Environment
NOV 25, 2018
What Would Happen if An Asteroid Slammed Into One of Earth's Oceans?
Have you ever wondered what would happen if an asteroid plopped right into one of Earth’s oceans? Curious researchers wanted to know too, and so they...
DEC 12, 2018
Chemistry & Physics
DEC 12, 2018
Tooth-rejuvenating Hydrogels as Alternative to Root Canal Therapy
When the tooth's pulp has a baterial infection, the sensitive nerve endings can become painfully inflamed. Root canal therapy, also known as the endodo...
DEC 17, 2018
Technology
DEC 17, 2018
Technology Brings Rise To New Metamaterial
Metamaterials have long been used by scientists for the manipulation of electromagnetic waves, like visible light, to allow the waves to act in ways not fo...
JAN 03, 2019
Chemistry & Physics
JAN 03, 2019
What's Raisin Bran Effect?
A healthy breakfast won't just make you feel wholesome and energetic, it may also improve your understanding of the dynamic of particle based-fluids. N...
JAN 16, 2019
Microbiology
JAN 16, 2019
Identifying Microbes That can Generate Electricity
Some microbes might be hugely beneficial to humans, such as in the production of energy and biofuels....
Loading Comments...