JUN 03, 2017 06:45 AM PDT

Can You Hear that Laser Beam: a New Photoacoustic Imaging Technique that Explores Anatomy and Physiology with High Spatiotemporal Resolution

Can you imagine pointing a flash light toward a cave and hearing the echo from within? No? The analogy appears absurd, but photoacoustic effect is real. It describes the occurrence of sound, or more accurately sound waves caused by the absorption of photonic energy. Photoacoustic tomography (PAT) is an imaging method that applies such phenomenon to examine anatomic structures and even physiological functions in biomedical research.

You might wonder how this imaging modality is compared to the ones that are already used routinely in the clinics. To generate images, X-ray, CT, SPECT (single photon emission computed tomography) and PET (positron emission tomography) all rely on a source of ionizing radiation, either external or internalized one. MRI (magnetic resonance imaging) requires strong magnetic field and radio waves, the monetary and time cost could easily add up. Compared to ultrasonic imaging, PAT has better optical contrasts and is free of speckle – noise caused by sound wave scattering. Finally, unlike other purely optical-based imaging techniques that are under development, PAT can penetrate deeper and sustain high spatial resolution.

Related reading: Photoacoustic tomography

Now the PAT family has a new member, which is designed to take the technique to a whole new level. According to an article recently published on Nature Biomedical Engineering, a new technique called single impulse panoramic-photoacoustic computed tomography (SIP-PACT) was developed by a team of researchers from Duke University and Caltech. It did a lot to improve upon the current PAT, and achieved several outstanding qualities: high spatiotemporal resolution, deep tissue penetration, multiple contrasts, and full-view fidelity.

The imaging device consists of a short-pulse laser as light source and a ring-shaped detector made from 512 ultrasonic transducer elements. To investigate the oxygenation status of hemoglobin and hemodynamics through the body, the authors used a head-focused and a whole-body tomographic slicing illumination scheme respectively. Thanks to the excellent performance of SIP-PACT, the joint research team not only captured real time images/videos of hemodynamic of small animals with exquisite detail of anatomic structures and physiological changes, but also tracked down circulating melanoma cells in the rat brains without any labeling.

“This penetration range enables functional imaging of whole bodies of small animals. It is expected to enable all kinds of biological studies in small animals and to accelerate drug discovery,” said the corresponding author of the paper Lihong Wang, who is a PAT pioneer of Caltech.

Article title image: an SIP-PACT cross section image of a rat's torso. Credit: Lihong Wang

Source: Optics.org 

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
NOV 07, 2018
Health & Medicine
NOV 07, 2018
Here's How Far Your Sneeze Can Travel
When you get stuck with a cold or the flu, sneezes are inevitable. But have you ever wondered how far your sneezes travel? As it turns out, your sneeze may...
NOV 09, 2018
Chemistry & Physics
NOV 09, 2018
The Quest to Determine the Length of a Saturnian Day Becomes the Gift that Keeps on Giving
As humankind sets sight on the interstellar space, some may forget that there are still plenty of mysteries remained within our planetary backyard. Take Sa...
DEC 04, 2018
Space & Astronomy
DEC 04, 2018
NASA's OSIRIS-REx Probe Arrives Safely at Asteroid Bennu
Following a two-year journey through our solar system, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (...
DEC 17, 2018
Space & Astronomy
DEC 17, 2018
According to NASA, Saturn's Rings Are Disappearing
Only a handful of worlds in the solar system sport planetary rings, but Saturn’s are the most robust. You’ve unquestionably seen Saturn’s...
JAN 23, 2019
Chemistry & Physics
JAN 23, 2019
"Jumping Crystals" the Microscopic Acrobats
  Often compared to the kernels popping and bouncing under the heat conveyed through microwave,  the thermosalient ("thermo" relates to...
JAN 30, 2019
Space & Astronomy
JAN 30, 2019
Are We Any Closer to Learning How Uranus Became So Tilted?
Every planet in the solar system sports distinct properties; however, Uranus seems to be the elephant in the room. It’s the only world in our stellar...
Loading Comments...