JUL 11, 2017 6:00 AM PDT

The Future of Nuclear Power

WRITTEN BY: Daniel Duan

Although many have questioned its overall safety and cost benefits, nuclear power remains a major workhorse in low-carbon power generation today. The International Atomic Energy Agency (IAEA) has identified three technologies as the keys to the future success of nuclear energy: fast reactors, small modular reactors, and fusion reactors.

Fast reactors, also known as fast-neutron reactors, have been extensively investigated and widely deployed across the globe. Reactors that use this technology require no neutron moderating medium such as light and heavy water, and graphite, which are essential for transforming fast neutrons (high in kinetic energy) into thermal neutrons (key to sustain fission) in conventional reactors. Although fast reactors consume fuels that are more enriched, they generate less toxic nuclear waste, dramatically reduce the decay time of the waste, and exhaust almost all its fuel material (high burnup rate).

Small modular reactors are smaller in size, manufactured at a central location, and ready for shipment by trucks and planes to application site. This technology requires less on-site construction and a smaller budget, satisfies the electricity needs of remote communities, and come with built-in passive safety measure to ensure a meltdown-free operation.

Related reading: Small modular reactors to be a part of Canada's Low-Carb Energy Diet

Unlike the two more tangible options mentioned above, fusion-based power generation is far from maturity. Despite having many advantages over fission-based reactors like reduced radiation and waste, almost endless fuel, and increased safety, fusion reactions in controlled environment are still facing technical challenges such as plasma heating and stability, confinement and exhaust of energy and particles, reactor safety and environmental compatibility, not to mention the overblown budgets for construction and testing. Large scale fusion projects include International Thermonuclear Experimental Reactor (ITER) in France and National Ignition Facility (NIF) in US. Considerable amount of progress has been made since mid last century, but so far none of experimented design has managed to produce positive net energy in a meaningful time window to allow power generation.

Source: IAEA

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAR 10, 2021
Chemistry & Physics
Where does the energy go in singlet fission?
MAR 10, 2021
Where does the energy go in singlet fission?
New research from scientists at Linköping University, Sweden, describes a recent discovery revealing where the ener ...
MAY 06, 2021
Chemistry & Physics
New 3D printed biomaterial paves the way for artificial leaves
MAY 06, 2021
New 3D printed biomaterial paves the way for artificial leaves
A study published in the journal Advanced Functional Materials highlights a new bioprinting technique that can be u ...
MAY 20, 2021
Microbiology
Sneaky Antoni van Leeuwenhoek Duped Curious Academics
MAY 20, 2021
Sneaky Antoni van Leeuwenhoek Duped Curious Academics
Antoni van Leeuwenhoek is a well-known pioneer in the field of microscopy. His research was so advanced, it took about 1 ...
MAY 18, 2021
Chemistry & Physics
What's all the fuss about diamonds, anyway?
MAY 18, 2021
What's all the fuss about diamonds, anyway?
You might only think of rings and bling when you think of diamonds, but in fact, there are a whole lot more uses for dia ...
MAY 27, 2021
Chemistry & Physics
Just add noise: improving AI decision-making
MAY 27, 2021
Just add noise: improving AI decision-making
New work on artificial intelligence from a collaboration between the University of Texas at San Antonio (UTSA), the Univ ...
JUN 10, 2021
Chemistry & Physics
Covalent organic frameworks provide the backbone for new aerogels
JUN 10, 2021
Covalent organic frameworks provide the backbone for new aerogels
New aerogels developed at Rice University are highly durable and capable of producing light. The aerogels are composed o ...
Loading Comments...