SEP 13, 2017 6:00 AM PDT

Plasma Medicine - Research Sheds Light On The Cause of Turbulence

WRITTEN BY: Daniel Duan

The low-temperature atmospheric pressure plasma jet in action. Credit: Amanda Lietz

Plasma, the fourth state of matter, is an ionized gas containing positive and negative ions or electrons. Nowadays various types of plasmas are used in different applications, from welding and vehicle exhaust cleanup to fighter jet engines and fusion reactors.

Plasma medicine is an emerging field that explores the potential of low temperature (upper limit of 50 °C) atmospheric plasma in clinical practice. This specific plasma uses helium as the gas source and produces chemically reactive species such as hydroxyl and nitric-oxide molecules. It can be useful in biomedical applications such as sterilization, disinfection and cancer therapy because the radicals can tear into the cellular structure of bacteria and cancer tissues. But there is often turbulence within the plasma jets - variance in flow direction and velocity. Ideally, in an application such as sterilization or therapy, a steady flow of plasma can guarantee predictable amount of radicals for the needed application. But turbulence in plasma would fail consistency.

For a long time, the cause of the turbulence remains unknown. Now, according to the new research published on the journal Applied Physics Letters, it could be caused by heat-induced sound waves generated at the plasma electrodes. By simulating the plasma jets, they discovered that the localized heating at the tip of the electrode (whose electric field ionizes gas) occurs on the time scale of the voltage pulse from 10 to 100 nano-second. The heat intensified the movement of gas molecules and created vibration (a propagating sound wave) which travels along with the stream. When the wave front reached the boundary of the electrode, where the plasma hit the air, it disrupted the plasma layer and caused turbulence.

The researchers hope that by figuring out how and where the turbulence occurs, they may be able to develop methods to control it and create a more consistent plasma-delivering device for medical applications. “Now that this phenomenon is relatively understood, researchers can enhance or dampen this effect, depending on what's best for the patient. Ultimately, this new analysis can lead to an approved and reliable treatment”, said Dr. Mark J. Kushner from the University of Michigan and the supervising author of the report.

Source: phys.org/Applied Physics Letters

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
FEB 12, 2021
Chemistry & Physics
Unlocking the enigma of platinum catalysts
FEB 12, 2021
Unlocking the enigma of platinum catalysts
Research published in Nature Communications reports new information identifying the specific roles that platinum na ...
MAR 13, 2021
Cell & Molecular Biology
Pencil-Eraser Tool Can Selectively Modify Proteins
MAR 13, 2021
Pencil-Eraser Tool Can Selectively Modify Proteins
Carbohydrates are essential sources of energy, but sugar molecules serve a variety of other biological functions as well ...
APR 08, 2021
Chemistry & Physics
Introducing pulp fly ash to concrete for a more sustainable system
APR 08, 2021
Introducing pulp fly ash to concrete for a more sustainable system
In an effort to create a more circular economy of materials, researchers from UBC Okanagan are designing methods to recy ...
APR 18, 2021
Chemistry & Physics
Making white paint even whiter could cut summertime energy costs
APR 18, 2021
Making white paint even whiter could cut summertime energy costs
Researchers from Purdue University have developed an ultra-white paint that can reflect solar heat and therefore decreas ...
MAY 14, 2021
Chemistry & Physics
New way to convert dangerous volatile organic compounds
MAY 14, 2021
New way to convert dangerous volatile organic compounds
The emission of volatile organic compounds (VOCs) from power plants and chemical manufacturing, as well as other industr ...
MAY 28, 2021
Chemistry & Physics
Are transparent solar cells in our near future?
MAY 28, 2021
Are transparent solar cells in our near future?
Scientists are searching for alternative technologies to replace traditional silicon solar cells and the limits of their ...
Loading Comments...