OCT 19, 2017 9:00 AM PDT

Proton Therapy Can Become More Accessible to Cancer Patients after Some Tweaking

WRITTEN BY: Daniel Duan

If there are only two things to be said about proton therapy, the first is that it is superior in treatment quality for cancer patients, and the second is that the technology bears a considerable cost which in return falls on the shoulders of patients and healthcare insurers. According to the two experts, Thomas R. Bortfeld and Jay S. Loeffler medical physicists from Massachusetts General Hospital, some aspects can be improved so that more patients with localized tumor can get access to proton therapy.

Treatment room of the Texas Center for Proton Therapy at Las Colinas. Credit: D Magazine

Proton therapy uses a beam of protons to irradiate cancerous tissues. Like other types of radiation therapy, it works by breaking up the DNA double strands in the tumor cells. The damage is either direct or indirect ionization of the atoms which make up the DNA chain.

In photon therapy such as X-rays or gamma rays, most of the radiation effect is through free radicals, a result of the ionization of water. Its effectiveness is hindered when facing cells of solid tumors that are deficient in oxygen. Low oxygen state is bad for forming free radicals.

Charged particles such as protons ions can cause direct damage to the cancer cells, and its tumor-killing effect is independent of tumor oxygen. These particles act mostly via direct energy transfer which results in the breaking of DNA double-strand.

Also due to their relatively large mass, protons have little lateral side scatter in the tissue, meaning that the beam stays focused on the tumor shape and delivers small dose side-effects to surrounding tissue.

Difference between traditional radiation therapy and proton therapy. Credit: DailyTelegraph

In the commentary published in Nature, Bortfeld and Loeffler argued that by resolving the following three issues: reducing the size of particle accelerators, sharpening proton beams and broadening health-care coverage, more cancer patients can benefit from the advanced treatment.

Proton beams are generated by particle accelerators like cyclotrons or synchrotrons. In the past decades, both the weight and size of accelerators has gone down a lot, and the development of more compact accelerator systems including superconducting synchrocyclotrons, ultra-compact synchrotrons, dielectric wall accelerators, and linear particle accelerators are underway. Currently, the smallest therapeutic accelerator is approximately the size of a king-sized bed.

However, the total footprint of the combined pieces of equipments still take up a couple of hundred square meters or above 2,100 square feet. Most cancer hospitals had neither the cash nor the space to house what are required for proton therapy. Both the equipment and the price tag need to shrink further if proton therapy is to outcompete photon-based radiation therapy.

Sharpening the proton beam can improve the precision of therapy. While high energy photons go right through the tissue, fast protons that enter the patient can see a quick slow down due to their interaction with body tissues, resulting to the point past which no more effect can be seen. Most of the beam's energy is deposited at the point, like the tip of a scalpel.

The speed of the proton dictates how deep the beam can reach into the human body. For example, protons with energies of around 50 MeV (mega electronvolt; 1 eV equals the amount of energy gained or lost by a single electron moving across an electric potential difference of one volt) can penetrate to a depth of a few centimeters; whereas with over 200 MeV, the proton can reach 30 cm. Further refining the focus of the proton beam and lower the overspill of radiation would even make it an ideal treatment for all oncology patients who need radiation therapy.

Coverage-wise, there are a lot more needed to accomplish to push proton therapy to the forefront. Currently, in the US, some hospitals focus on common and easy-to-treat tumors such as prostate cancer so that they can recover the investment on proton centers. Those who can afford the treatment often pay out of their pockets, since insurers are reluctant to cover such treatment. So the most common cancer treated with protons is one in which it makes the least clinical difference.

Another accessibility issue is that patients must be referred to a handful of therapy centers. Domestic or even international traveling expenses and the local physicians’ fear of losing revenue make few patients benefit from the technology.

By tackling all three bottlenecks, Bortfeld and Loeffler hoped that proton therapy could one day become the treatment of choice for all eligible cancer patients.  

Cyclotron and Proton Therapy Animation. Credit: Scripps Proton Therapy Center

 

Source: Nature

 

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 21, 2020
Chemistry & Physics
Biorubber glue reduces surgery time and improves pain relief
AUG 21, 2020
Biorubber glue reduces surgery time and improves pain relief
A study published recently in Biomaterials showcases a new development in biomaterials that could forever change th ...
AUG 17, 2020
Chemistry & Physics
First ever documented liquid-to-liquid transition in sulfur
AUG 17, 2020
First ever documented liquid-to-liquid transition in sulfur
New research published in Nature documents evidence for a liquid-to-liquid transition in sulfur, a first-order phase tra ...
SEP 21, 2020
Chemistry & Physics
Stable skyrmions hold the future of electronic devices
SEP 21, 2020
Stable skyrmions hold the future of electronic devices
New research published in Nature Communications reports on development in skyrmion stability, brought to us from sc ...
SEP 25, 2020
Chemistry & Physics
Colossal Study for the Missing (Anti)Matter
SEP 25, 2020
Colossal Study for the Missing (Anti)Matter
Physicists believe that our observable universe exists in a mirrored configuration: any fundamental particle such as pro ...
OCT 02, 2020
Chemistry & Physics
A New Way of Building Houses: 3-D Printing with Clay
OCT 02, 2020
A New Way of Building Houses: 3-D Printing with Clay
Our ancestors had a long history of building dwelling structures using clay and plant-based fibrous materials. Even thes ...
OCT 14, 2020
Chemistry & Physics
The CRISPR Nobel Win from Different Angles
OCT 14, 2020
The CRISPR Nobel Win from Different Angles
CRISPR-Cas9 was THE buzz word in the world of science after the Nobel Chemistry Prize announcement last week. But depend ...
Loading Comments...