FEB 06, 2016 7:27 AM PST

ALS Money Well Spent: Cure Now Possible In Mice

WRITTEN BY: Xuan Pham
ALS money well spent: Cure for human ALS on the horizon

Ever wonder how the money raised by the Ice Bucket Challenge for ALS was used? Among other things, the money helped fund a group of researchers at Oregon State University who tested a new treatment in a mouse model of Lou Gehrig’s disease. The treatment, they reported, successfully halted neurodegeneration in the mice, allowing them to live significantly longer.
 
Known formally as amyotrophic lateral sclerosis (ALS), Lou Gehrig's disease is a fatal condition caused by the gradual breakdown and death of motor neurons in the spinal cord. All muscles under voluntary control are affected, causing muscle weakness and severe impairments in daily functions. There is no known cure and most ALS patients die from respiratory failure within 3 to 5 years from the onset of symptoms.
 
Mutations in the SOD1 gene has been linked to about 20% the inherited cases of ALS. The gene SOD1 encodes the enzyme superoxide dismutase 1, which has to be stabilized by a copper metal co-factor in order to function properly. In ALS, the SOD1 protein lacks copper and adopts a toxic folding structure that kills motor neurons.
 
To correct SOD1’s needs for its proper metal co-factor, scientists at Oregon State University (OSU) turned to a chemical agent known as copper-ATSM. Already in clinical use for other purposes, copper-ATSM can cross the blood-brain barrier to the deliver copper to the cells in the brain and spinal cord in just minutes. In addition, the compound has low toxicity and the body can easily flush out any excess.
 
Led by Dr. Joseph Beckman, professor of biochemistry and biophysics in the College of Science at OSU, the team used copper-ATSM to treat mice genetically engineered to model human ALS. These mice over express the mutant SOD1 protein and also carry the human gene CCS (Copper-Chaperone-for-SOD). The combination of mutations causes the mice to develop ALS symptoms and rapidly die within two weeks without treatment.

The researchers found that copper-ATSM prolonged the lifespan of these mice by as much as 500 days, a record that’s never been achieved before. Other treatments in the past 20 years of ALS research have only added weeks to the ALS mice lifespan. The research was published in the journal Neurobiology of Disease.
 
When treatment was started and stopped, the mice showed ALS symptoms within 2 months and died within another month. When treatment was resumed, the ALS symptoms subsided and the mice lived for another 6-12 months. This shows that the motor neuron disease can be restarted and stopped with the control of the copper-ATSM treatment.
 
Of note, the authors stress that this new treatment is not the same as taking copper supplements. The body’s central nervous system has a tight regulation on copper uptake, and moderate doses of copper, improperly delivered, can be extremely toxic.
 
The success of the new treatment in ALS mice is truly remarkable. Showing effectiveness in mice is an important first step in moving to human trials, which Beckman plans to do very soon.

We are shocked at how well this treatment can stop the progression of ALS. We want people to understand that we are moving to human trials as quickly as we can. – Joseph Beckman, lead study author.

 

Additional source: Science Daily
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 05, 2020
Clinical & Molecular DX
Painless Microneedle Patch Diagnoses Malaria in Minutes
NOV 05, 2020
Painless Microneedle Patch Diagnoses Malaria in Minutes
It looks like a Band-Aid — a small, adhesive patch that is applied directly to the skin. This simple, low-cost dia ...
NOV 12, 2020
Clinical & Molecular DX
Study Shows 1 in 5 COVID Tests Are False Positives
NOV 12, 2020
Study Shows 1 in 5 COVID Tests Are False Positives
  A study published in The BMJ has brought to light that the rapid finger-prick COVID-19 test may not be quite as r ...
DEC 01, 2020
Clinical & Molecular DX
Breathing New Life Into COVID Diagnostics
DEC 01, 2020
Breathing New Life Into COVID Diagnostics
Widespread diagnostic testing capacities are an absolutely critical tool for countries battling the pandemic. For now, m ...
DEC 24, 2020
Clinical & Molecular DX
Feeling Unmotivated? It Could Be Dementia.
DEC 24, 2020
Feeling Unmotivated? It Could Be Dementia.
Apathy, characterized by a pronounced lack of enthusiasm, motivation, or interest, is a predictor of the future onset of ...
DEC 26, 2020
Clinical & Molecular DX
Navigating the Genomic Landscape of Cancer in Asians
DEC 26, 2020
Navigating the Genomic Landscape of Cancer in Asians
Precision medicine — a clinical paradigm that tailors treatments specifically to patients based on their genetic a ...
FEB 23, 2021
Clinical & Molecular DX
Dogs Versus AI-Powered Diagnostic Devices-Who Won?
FEB 23, 2021
Dogs Versus AI-Powered Diagnostic Devices-Who Won?
We’ve heard of dogs sniffing out cancer—an unsurprising skill given that they have over 200 million scent re ...
Loading Comments...