MAR 27, 2016 9:39 AM PDT

MicroRNA Point to New Targets For Diabetes Treatment

WRITTEN BY: Xuan Pham
Image credit: Pixabay.com


Since their discovery in the early 1990s and 2000s, micro-RNAs (miRNAs) have been implicated in a variety of human conditions. Most recently, researchers added yet another role of miRNAs in human health, this time in the regulation of weight and fat storage. As it turns out, a micro-RNA known as miR-181b is involved in influencing the risks for obesity and diabetes.    
 
Micro-RNAs are simple short nucleotide sequences, usually 21-23 bases long, that act to silence gene expression. There are currently hundreds of known miRNAs, and most exist in unique locations inside the human body.

For the study, researchers at the Brigham and Women's Hospital (BWH) investigated whether specific miRNAs reside in adipose tissues, and whether these structures affect insulin resistance leading to obesity. To answer these questions, the team studied obese mice and found lower expression of miR-181b in adipose tissue endothelial cells.
 
They next wondered whether rescuing the expression of miR-181b to normal levels would improve insulin resistance. Indeed, when they administered a synthesized mimic of miR-181b to the obese mice, the researchers observed an improvement in glucose homeostasis and insulin sensitivity. Furthermore, inflammatory responses in fat tissues were also markedly improved when miR-181b levels were rescued.
 
Then using bioinformatics and gene profiling approaches, the team identified the target of miR-181b: a protein phosphatase enzyme called PHLPP2. In mice missing PHLPP2, researchers found the same biological effects as increasing miR-181b levels. These included improvement in glucose homeostasis and insulin sensitivity. PHLPP2 levels were also found at higher levels in endothelial cells from diabetic patients versus healthy controls.
 
The results demonstrate a direct involvement of this micro-RNA in the regulation of fat tissues during obesity. Moreover, it suggests that PHLPP2 could be a potential new target for treating related conditions in humans. "The beneficial role of this microRNA in obesity is likely the tip of the iceberg since excessive inflammation is a pervasive finding in a wide-range of chronic inflammatory diseases,” said Mark W. Feinberg, associate physician at BWH and senior study author.

Additional source: Brigham and Women's Hospital via EurekAlert!

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
APR 20, 2021
Cardiology
Does Impaired Glucose Tolerance Increase Heart Damage After a Stroke?
APR 20, 2021
Does Impaired Glucose Tolerance Increase Heart Damage After a Stroke?
Diabetes is a looming threat to the world’s healthcare systems. Diagnoses of its precursors, impaired glucose tole ...
APR 27, 2021
Clinical & Molecular DX
No Batteries: Health Sensor Harvests Biomechanical Energy
APR 27, 2021
No Batteries: Health Sensor Harvests Biomechanical Energy
An international team of researchers has developed a wearable health monitor that works without the need for batteries. ...
JUL 22, 2021
Clinical & Molecular DX
"Smart Bandage" Keeps an Eye on Wounds
JUL 22, 2021
"Smart Bandage" Keeps an Eye on Wounds
Wounds are an ideal environment for microorganisms to thrive. Their presence can easily overwhelm immune defenses at the ...
AUG 31, 2021
Clinical & Molecular DX
Five Questions to Help You Select the Best Cellular Stain
AUG 31, 2021
Five Questions to Help You Select the Best Cellular Stain
Cellular stains are organic fluorescent dyes or fluorescent conjugates designed to localize to a specific organelle or c ...
SEP 01, 2021
Clinical & Molecular DX
Will Childhood Cancer Survivors Go On to Have Broken Hearts?
SEP 01, 2021
Will Childhood Cancer Survivors Go On to Have Broken Hearts?
Patients are seven times more likely to have a heart attack or stroke than the general population after receiving treatm ...
SEP 16, 2021
Clinical & Molecular DX
Your T-Shirt Could Soon Tell You if Your Heart Is Ok
SEP 16, 2021
Your T-Shirt Could Soon Tell You if Your Heart Is Ok
Forget uncomfortable chest straps or clunky wristbands—thanks to a new innovation in nanotechnology, your t-shirt ...
Loading Comments...