MAR 28, 2016 6:52 AM PDT

Hydrogel ‘Band-Aids': The World's Smartest Bandages

WRITTEN BY: Xuan Pham
MIT researchers develop nex-gen ‘smart' Band-Aids with hydrogelResearchers at the Massachusetts Institute of Technology (MIT) recently added another invention to the emerging world of smart, wearable technologies. Their innovation, dubbed the “Band-Aid of the future,” comes in the form of a flexible, sticky, transparent hydrogel material that can incorporate temperature sensors, LED lights, and other technologies to completely revolutionize the future of wound dressing.
 
At the core of the next-generation Band-Aids is the material known as hydrogel. Synthesized from natural polymers like collagen or alginate, hydrogels have hydrophilic polymer chains that can absorb 70-95 percent of water. It is this high water content that renders the hydrogel so flexible and stretchy, which is why they’re used to make contact lenses and even condoms.
 
The stretchy property of hydrogels makes it ideal for sticking to skin as part of wound dressing. Whereas traditional gauze and Band-Aids don’t adhere well to body joints like knees and elbows, hydrogels easily wrap and stretch with the movements of these joints. Hydrogels maintain their structural integrity without compromising mobility for the patients. In addition, because of the high water content, hydrogel dressings provide moisture and cooling relief to the wounds, which accelerates its healing.
 

Led by Xuanhe Zhao, the MIT research team improved on the hydrogel composition to create one that’s mechanically tougher and can bond with other materials like gold, titanium, aluminum, silicon, glass, and ceramic – the common components of electronics. This means that sensors can be easily embedded within the hydrogel without getting shifted or lost.
 
To make this new hydrogel dressing ‘smart,’ MIT researchers added electronic sensors that can provide biometrics about the wound status and patient health. This included temperature and vitals sensors, LED lights, and microfluidic reservoirs for controlled drug release. The ultimate goal is to use changes in skin temperature as a guide for the release of medicines to the wound. And LED lights would alert doctors of when the medicine is running low or of other problems.
 
"If you want to put electronics in close contact with the human body for applications such as health care monitoring and drug delivery, it is highly desirable to make the electronic devices soft and stretchable to fit the environment of the human body. That's the motivation for stretchable hydrogel electronics. You need to think of long-term stability of the hydrogels and interfaces," said Zhao.
 
Indeed, the team demonstrated that hydrogel dressings remained in place, with all electronic sensors functioning as expected, even when the material was stretched across difficult areas like elbows and knees.
 
One immediate application for hydrogel dressings would be for the treatment of burns and other skin conditions. But Zhao and his team also intend to customize uses for smart hydrogels for inside the body, as part of implanted sensor devices and even as probes in the brain.

Additional source: MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 25, 2019
Clinical & Molecular DX
NOV 25, 2019
eRapid: molecular diagnostic power in the palm of your hand
We've heard lofty biotech promises in the news of being able to diagnose diseases from a single drop of blood. Yet, diag ...
FEB 07, 2020
Clinical & Molecular DX
FEB 07, 2020
New diagnostic technology uses levitating proteins
Intrinsic biophysical properties of proteins hold valuable clues about how they function and their role in disease. Take ...
FEB 19, 2020
Immunology
FEB 19, 2020
Testing the Immune Response to Ovarian Cancer Treatment
There is a new diagnostic test for the deadliest form of gynecological cancer – ovarian cancer. Better tests mean ...
FEB 21, 2020
Clinical & Molecular DX
FEB 21, 2020
Diagnosing COVID-19
Diagnosing coronavirus is done through next-generation sequencing, real-time RT-PCR tests, cell culture, and electron mi ...
MAR 13, 2020
Cardiology
MAR 13, 2020
Heart Cancer, A Rarity
Cardiac tumors are generally considered rare, happening in only one in 500 cardiac surgery cases. These growths are ofte ...
APR 23, 2020
Clinical & Molecular DX
APR 23, 2020
FDA Approves At-Home Sample Collection Diagnostic Test for COVID-19
The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). M ...
Loading Comments...