AUG 01, 2016 12:21 PM PDT

$1.57 Million Grant to Combat Hospital-Acquired Infections

WRITTEN BY: Xuan Pham
Much like the bacteria that build plaque in your teeth, bacteria can colonize medical implants as slimy films that cause infections. Furthermore, these infections are often difficult to treat because the bacteria, especially those from hospitals, have become resistant to antibiotics. To reduce these types of infections, the National Institute of Health (NIH) recently awarded Clemson University scientists a $1.57 million grant aimed at a new detection technology.

Biofilm on a catheter | Image: wikimedia

Clemson’s team hope to tackle hospital-acquired infections through a dye-based sensor that’s sensitive to the acid levels on the surface of medical implants.

"What we're attempting to do is quite challenging," said Jeffrey Anker, Associate Professor of Chemistry at Clemson, and leader of the new project efforts. "We're trying to put a sensor on a plate that will be able to reside in a human body for a reasonable period of time in order to monitor changes in local acidity that will detect infection. Bacteria produce a lot of acids. A human's immune system also produces acids. So if low pH is detected on the surface of an implant, it will be reasonable to assume that the implant is infected. But our research will also delve more into these aspects to determine their validity."

In its planktonic form, the bacteria grow as single, independent cells, causing acute infections that can be treated with antibiotics. In its biofilm form, the bacteria exist as aggregated colonies that secrete a slimy film, which serves to protect them against the environment. More than 80% of infections are attributed to biofilms. In addition to growing on medical devices like dialysis catheters and contact lenses, biofilms can also dwell inside patients -- in the respiratory, gastrointestinal and urinary tracts, oral cavities, eyes, ears, wounds, heart and cervix. Because the slime protects them against antibiotics, some infections by biofilms are resistant to drugs and develop into a chronic state.

"Bacterial colonization of medical implants is a major cause of device failure and often requires device removal coupled with long-term antibiotic treatment," said Anker. "However, detection is challenging at early stages when the bacteria are localized to inaccessible regions of the implant. Our research will focus on developing sensors that will coat the implant. Then we'll use X-ray beams to scan the sensors, enabling us to detect and monitor the infection."
 

Most current technologies only detect bacterial infection when things get really bad for the patients. But when the infection is severe, antibiotics may not be enough for the drug-resistant biofilms. Even if the bacteria aren’t resistant, the slime surface enables some colonies to escape treatment and then sprouting new infections. “At this point, the implant typically needs to be tediously cleansed during a surgical procedure called debridement. If the biofilm isn't fully mature, this is sometimes effective. But if the biofilm has been long established, then debridement usually isn't good enough. The implant will then need to be removed and the remaining infection treated with antibiotics before a new implant is inserted,” explained Anker.

With the new research, the Clemson team hope to finally give doctors a leg-up on bacterial infections. Instead of playing catch-up with the bacteria, early detection could prompt faster and more effective treatments. And that’s important for everyone, as infections add a significant amount of burden on a health care system that’s already very stressed.
 

Additional source: Clemson University press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 15, 2019
Immunology
SEP 15, 2019
New Observations of a Cancer Transcriptase
New research shows a transcriptase that helps time cell death varies in expression, and is unusually localized, in cancer cells.  The transcriptase, T...
NOV 26, 2019
Clinical & Molecular DX
NOV 26, 2019
Looking into the eyes of MS patients for personalized therapies
Blurred or double vision, and in extreme cases, complete vision loss are amongst the earliest symptoms of multiple sclerosis (MS). In this devastating dise...
JAN 07, 2020
Clinical & Molecular DX
JAN 07, 2020
Saliva Test for Early Detection of Mouth and Throat Cancer
“OPC is one of the fastest rising cancers in Western countries due to increasing HPV-related incidence, especially in younger patients. It is paramou...
JAN 15, 2020
Clinical & Molecular DX
JAN 15, 2020
Laser microchip picks up cancer markers in urine
A future where patients no longer need to endure expensive, painful and complicated cancer tests could soon become a reality. Researchers have developed a...
MAR 03, 2020
Clinical & Molecular DX
MAR 03, 2020
Singapore charges ahead with antibody-based test for COVID-19
Researchers, biotech and pharmaceutical companies are scrambling to put an end to the coronavirus disease (COVID-19) outbreak’s continued global esca...
MAR 24, 2020
Clinical & Molecular DX
MAR 24, 2020
Ultra sensitive cancer diagnostic detects DNA "fingerprints" in liquid biopsies
  Researchers from the Broad and Dana-Farber Cancer Institutes have developed a diagnostic technology that can monitor for the presence of recurring c...
Loading Comments...