AUG 20, 2016 3:48 AM PDT

Salt Discovery Could Prevent Food Poisoning from MRSA

WRITTEN BY: Xuan Pham
Can the staph superbug, also known as MRSA, be brought down by salt? Scientists finally expose a key weakness in these bacteria that makes them susceptible to dehydration from high salt concentration. And this could mean an antibiotic-free alternative to thwarting this superbug.


 
The formidable methicillin-resistant Staphylococcus aureus (MRSA) bacteria account for over 80,000 hospital-acquired infections, leading to over 11,000 deaths every year. MRSA infections take a serious turn when the bacteria invade the bloodstream and major organs, and antibiotics available in doctors’ arsenals can’t seem to contain them. This is the case with some MRSA strains, which have developed resistance to vancomycin, one of the most valuable antibiotics against staph infections.
 
To explore other ways to target staph bacteria, scientists at the Imperial College London looked at how the bacteria regulate its salt balance, since high salt can cause cells to lose water and die. They found that S. aureus is notoriously good at protecting itself against dehydration via a signaling molecule known as cyclic di-AMP. Targeting this signaling molecule appeared to break the bacteria’s defenses against water loss, making it more susceptible to high salt concentrations.

"The Staphylococcus aureus bacterium is a key pathogen and causes many serious infections in patients. With this research we now have a better understanding of how the bacteria cope with salt stress. Although this research is at an early stage, we hope this knowledge will someday help us to prevent food borne staphylococcal infections, as well as open new possibilities for a type of treatment that may work alongside antibiotics,” said Angelika Gründling, senior author of the study.
 

The research findings could have direct health impacts through the foods we eat. "Many food preservation methods use salt to keep food fresh and prevent bacteria from multiplying. However, there are always some bacteria such as Staphylococcus aureus that are resistant to these high salt levels, and survive,” said Christopher Schuster, the study’s first author.
 
Indeed, food poisoning from lingering staph bacteria is all too common. “But if we can develop some form of treatment that interrupts these signaling molecules, we could ensure salt kills all of the bacteria,” Schuster explained.
 
This mechanism may even apply more broadly to other bacteria. In experiments, other researchers have also shown that Listeria bacteria also use a similar coping mechanism. 

Additional source: Imperial College London
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
APR 01, 2020
Clinical & Molecular DX
One dollar kit diagnoses COVID-19 in 10 minutes
APR 01, 2020
One dollar kit diagnoses COVID-19 in 10 minutes
Researchers have begun efficacy testing for a new SARS-CoV-2 diagnostic kit that claims to be able to test for COVID-19 ...
APR 14, 2020
Immunology
Immunotherapy Shows Promise, Destroys Metastatic Brain Tumors
APR 14, 2020
Immunotherapy Shows Promise, Destroys Metastatic Brain Tumors
Lung cancer is the leading cause of death in both men and women in the U.S., with smokers bearing an elevated risk of th ...
MAY 21, 2020
Clinical & Molecular DX
Taking the Guesswork out of Fat Consumption
MAY 21, 2020
Taking the Guesswork out of Fat Consumption
  When it comes to healthy eating, we often receive mixed messages. Low fat diets that have been popularized for de ...
JUL 09, 2020
Clinical & Molecular DX
Women's Hair Holds Fertility Clues
JUL 09, 2020
Women's Hair Holds Fertility Clues
A new predictive tool for measuring women’s fertility uses an unlikely biological source for answers: hair. During ...
JUL 16, 2020
Clinical & Molecular DX
AI Platform Alerts to the Earliest Signs of COVID-Related Pneumonia
JUL 16, 2020
AI Platform Alerts to the Earliest Signs of COVID-Related Pneumonia
Severe cases of COVID-19 can cause pneumonia, a process whereby the delicate air sacs in the lungs swell with fluid, and ...
JUL 27, 2020
Clinical & Molecular DX
Guidance for Optimization of a Real-Time qPCR Assay
JUL 27, 2020
Guidance for Optimization of a Real-Time qPCR Assay
Optimizing the formulation of reagents for your qPCR assay requires careful experimental design that looks across severa ...
Loading Comments...